
Lecture 14: Midterm
Review Data Structures and Algorithms

CSE 373 19 SP - KASEY CHAMPION 1

Administrivia
HW 3 is due today
- you get 2 more late days for the quarter

HW 4 is out later today

Midterm Prep
- Attend section tomorrow, solutions have already been posted
- Review TONIGHT in PAA 102 4-5:50, panopto will be available
- Erik filmed a review session, check it out on the website

2CSE 373 19 SP - KASEY CHAMPION

A message about grades…

3CSE 373 19 WI - KASEY CHAMPION

Midterm Logistics
50 minutes

8.5 x 11 in note page, front and back

Math identities sheet provided (see posted on website)

We will be scanning your exams to grade…
- Do not write on the back of pages
- Try not to cram answers into margins or corners

4CSE 373 19 WI - KASEY CHAMPION

Asymptotic Analysis

CSE 373 SP 18 - KASEY CHAMPION 5

Asymptotic Analysis
asymptotic analysis – the process of mathematically representing runtime of a algorithm in
relation to the number of inputs and how that relationship changes as the number of inputs
grow

Two step process
1. Model – the process of mathematically representing how many operations a piece of code

will run in relation to the number of inputs n

2. Analyze – compare runtime/input relationship across multiple algorithms
1. Graph the model of your code where x = number of inputs and y = runtime
2. For which inputs will one perform better than the other?

6CSE 373 19 WI - KASEY CHAMPION

Code Modeling
code modeling – the process of mathematically representing how many operations a piece
of code will run in relation to the number of inputs n

Examples:
- Sequential search
- Binary search

CSE 373 SP 18 - KASEY CHAMPION 7

What counts as an “operation”?
Basic operations
- Adding ints or doubles
- Variable assignment
- Variable update
- Return statement
- Accessing array index or object field

Consecutive statements
- Sum time of each statement

! " = "
! " = $%&2"

Function calls
- Count runtime of function body

Conditionals
- Time of test + worst case scenario branch

Loops
- Number of iterations of loop body x runtime of loop

body

Assume all operations run in equivalent time

Code Modeling
public int mystery(int n) {

int result = 0;

for (int i = 0; i < n/2; i++) {

result++;

}

for (int i = 0; i < n/2; i+=2) {

result++;

}

result * 10;

return result;

}

8

! " = 3 + 34" = '1 +
3
4"

+1

+1

+1

+1

+1

n/2

n/4

CSE 373 19 SP - KASEY CHAMPION

Code Modeling Example
public String mystery (int n) {

ChainedHashDictionary<Integer, Character> alphabet =
new ChainedHashDictionary<Integer, Character>();

for (int i = 0; i < 26; i++) {
char c = ‘a’ + (char)i;
alphabet.put(i, c);

}
DoubleLinkedList<Character> result = new DoubleLinkedList<Character>();
for (int i = 0; i < n; i += 2) {

char c = alphabet.get(i);
result.add(c);

}
String final = “”;
for (int i = 0; i < result.size(); i++) {

final += result.remove();
}
return final;

}

9CSE 373 19 SP - KASEY CHAMPION

+1

+1

+1

+1

+26

n/2

n/2

+26
+1

+1

! " = 4 + 26 + 27 "
2 + "2 =)* +)+"

Function growth

10

…but since both are linear
eventually look similar at large
input sizes
whereas h(n) has a distinctly
different growth rate

The growth rate for f(n) and
g(n) looks very different for
small numbers of input

But for very small input values
h(n) actually has a slower growth
rate than either f(n) or g(n)

Imagine you have three possible algorithms to choose between.
Each has already been reduced to its mathematical model ! " = " $ " = 4" ℎ " = "'

("

"

("

"

("

"

CSE 373 19 WI - KASEY CHAMPION

O, Ω, Θ Definitions
O(f(n)) is the “family” or “set” of all functions
that are dominated by f(n)
- f(n) ∈ O(g(n)) when f(n) <= g(n)
- The upper bound of an algorithm’s function

Ω(f(n)) is the family of all functions that
dominate f(n)
- f(n) ∈ Ω(g(n)) when f(n) >= g(n)
- The lower bound of an algorithm’s function

Θ(f(n)) is the family of functions that are
equivalent to f(n)
- We say f(n) ∈ Θ(g(n)) when both
- f(n) ∈ O(g(n)) and f(n) ∈ Ω (g(n)) are true
- A direct fit of an algorithm’s function

CSE 373 SP 18 - KASEY CHAMPION 11

"($) ∈ &(' $) if there exist positive
constants (, $* such that for all $ ≥ $*,

" $ ≤ (⋅ ' $

Big-O

"($) ∈ Ω(' $) if there exist positive
constants (, $* such that for all $ ≥ $*,

" $ ≥ (⋅ ' $

Big-Omega

"($) ∈ Θ(' $) if
" $ is &(' $) and " $ is Ω(' $).

Big-Theta

Proving Domination
f(n) = 5(n + 2)

g(n) = 2n2

Find a c and n0 that show that f(n) ∈ O(g(n)).

12

"($) ∈ &(' $) if there exist positive
constants (, $* such that for all $ ≥ $*,

" $ ≤ (⋅ ' $

Big-O

" $ = 5 $ + 2 = 5$ + 10

5$ + 10 ≤ 3 2n6 + 5(2n6) when n ≥ 1
10 ≤ (: 2n6 for c = 5 when n ≥ 1
5$ ≤ (: 2n6 for c = 3 when n ≥ 1

5$ + 10 ≤ 8 2n6 when n ≥ 1
" $ ≤ (: ' $ @ℎB$ (= 8 C$D $0 = 1

CSE 373 19 WI - KASEY CHAMPION

O, Ω, Θ Examples
For the following functions give the simplest tight O bound

a(n) = 10logn + 5

b(n) = 3n – 4n

c(n) = !"

For the above functions indicate whether the following are true or false

a(n) ∈ O(b(n))

a(n) ∈ O(c(n))

a(n) ∈ Ω(b(n))

a(n) ∈ Ω(c(n))

a(n) ∈ Θ(b(n))

a(n) ∈ Θ(c(n))

a(n) ∈ Θ(a(n))

CSE 373 SP 18 - KASEY CHAMPION 13

O(logn)

O(3n)

O(n)

TRUE

TRUE

FALSE

FALSE

FALSE

FALSE

TRUE

b(n) ∈ O(a(n))

b(n) ∈ O(c(n))

b(n) ∈ Ω(a(n))

b(n) ∈ Ω(c(n))

b(n) ∈ Θ(a(n))

b(n) ∈ Θ(c(n))

b(n) ∈ Θ(b(n))

FALSE

FALSE

TRUE

TRUE

FALSE

FALSE

TRUE

c(n) ∈ O(b(n))

c(n) ∈ O(a(n))

c(n) ∈ Ω(b(n))

c(n) ∈ Ω(a(n))

c(n) ∈ Θ(b(n))

c(n) ∈ Θ(a(n))

c(n) ∈ Θ(c(n))

TRUE

FALSE

FALSE

TRUE

FALSE

FALSE

TRUE

Review: Complexity Classes
complexity class – a category of algorithm efficiency based on the algorithm’s
relationship to the input size N

CSE 373 SP 18 - KASEY CHAMPION 14

Class Big O If you double N… Example algorithm

constant O(1) unchanged Add to front of
linked list

logarithmic O(log2n) Increases slightly Binary search

linear O(n) doubles Sequential search

log-linear O(nlog2n) Slightly more
than doubles

Merge sort

quadratic O(n2) quadruples Nested loops
traversing a 2D array

cubic O(n3) Multiplies by 8 Triple nested loop

polynomial O(nc)

exponential O(cn) Multiplies
drastically

http://bigocheatsheet.com/

http://bigocheatsheet.com/

Modeling Complex Loops
for (int i = 0; i < n; i++) {

for (int j = 0; j < i; j++) {
System.out.println(“Hello!”);

}
}

CSE 373 SP 18 - KASEY CHAMPION 15

+1 0 + 1 + 2 + 3 +…+ n-1 n

Summation
1 + 2 + 3 + 4 +… + n =

!
"#$

%
&

= f(a) + f(a + 1) + f(a + 2) + … + f(b-2) + f(b-1) + f(b)

Definition: Summation

!
"#'

(
)(&)

T(n) =

+c

!
"#,

%-$
!
.#,

"-$
/

Function Modeling: Recursion

public int factorial(int n) {
if (n == 0 || n == 1) {

return 1;
} else {

return n * factorial(n – 1);
}

CSE 373 SP 18 - KASEY CHAMPION 16

+c1

+T(n-1)
+c2

C1

C2 + T(n-1)
T(n) =

when n = 0 or 1

otherwise

Mathematical equivalent of an if/else statement

f(n) =

Definition: Recurrence

!"#$%&'()* +,-(.,-(/ℎ($.)$1&%&)$,2"#$%&'()* "(.#"-&3(.,-()%ℎ("/&-(

Tree Method Formulas
How much work is done by recursive levels (branch nodes)?
1. How many recursive calls are on the i-th level of the tree?

- i = 0 is overall root level

2. At each level i, how many inputs does a single node process?
3. How many recursive levels are there?

- Based on the pattern of how we get down to base case

How much work is done by the base case level (leaf nodes)?
1. How much work is done by a single leaf node?
2. How many leaf nodes are there?

CSE 373 SP 18 - KASEY CHAMPION 17

!"#$%&'(")*%+ = -
./0

1234567894:

;%<=#ℎ?$@ ' ;%<=#ℎA*%+(')

?*=!"#$%&'(")*%+ = D"<EA*%+×D"<EG*$=H = D"<EA*%+×;%<=#ℎ?$@49IJKLKMN

O = =
1)ℎ"= = ≤ 1

2O
=
2
+ = *Hℎ"%)'&"

numberNodesPerLevel(i) = 2i

inputsPerRecursiveCall(i) = (n/ 2i)
branchCount = log2n - 1

O(= > 1) = -
./0

UVWX 4YZ

2.
=
2.

leafWork = 1
leafCount = 2log2n = n

O = ≤ 1 = 1 2M8[\4 = =

O = = -
./0

UVWX 4YZ

2.
=
2.

+ = = = log\ = + =H*H<D)*%+ = %"#$%&'(")*%+ + =*=%"#$%&'(")*%+ =

Tree Method Example

18CSE 373 19 WI - KASEY CHAMPION

! " =
3 %ℎ'" " = 1
3! "

3 + " *+ℎ',%-.'

Size of input at level i?

Number of nodes at level i?

How many nodes are on the bottom level?

How many levels of the tree?

Total recursive work

How much work done in base case?3/

"
3/

0
/12

3456 7 89 "
3/ 3

/ = n log>(")

log>(")

3"

33456(7) = "

! " = " log>(")+3"

Reflecting on Master Theorem
The case
- Recursive case conquers work more quickly than it divides work
- Most work happens near “top” of tree
- Non recursive work in recursive case dominates growth, nc term

The case
- Work is equally distributed across call stack (throughout the “tree”)
- Overall work is approximately work at top level x height

The case
- Recursive case divides work faster than it conquers work
- Most work happens near “bottom” of tree
- Leaf work dominates branch work

CSE 373 SP 18 - KASEY CHAMPION 19

! " =
$ %ℎ'" " = 1

)! "
* + ", -.ℎ'/%01'

log5) = 6 ! " ∈ Θ ", log9 "
log5) > 6 ! " ∈ Θ ";<=> ?

If

If

! " ∈ Θ ",log5) < 6If then

then

then

Given a recurrence of the form: log5) < 6

log5) = 6

log5) > 6

A')BC-/D ≈ $ ";<=> ?

ℎ'0Fℎ. ≈ log5)
*/)"6ℎC-/D ≈ ",log5)

Master Theorem Example

20CSE 373 19 WI - KASEY CHAMPION

! " =
3 %ℎ'" " = 1
3! "

3 + " *+ℎ',%-.' ! " =
/ %ℎ'" " = 1

0! "
1 + "2 *+ℎ',%-.'

log6 0 = 7 ! " ∈ Θ "2 log "
log6 0 > 7 ! " ∈ Θ ";<=> ?

If

If

! " ∈ Θ "2log6 0 < 7If then

then

then

Given a recurrence of the form:

0 = 3
1 = 3
7 = 1

logA 3 = 1
! " -. -" B("D*E")

BST & AVL Trees

CSE 373 SP 18 - KASEY CHAMPION 21

Binary Search Trees
A binary search tree is a binary tree that contains comparable items such that for every node, all
children to the left contain smaller data and all children to the right contain larger data.

CSE 373 SP 18 - KASEY CHAMPION 22

10

9 15

7 12 18

8 17

Meet AVL Trees
AVL Trees must satisfy the following properties:
- binary trees: all nodes must have between 0 and 2 children
- binary search tree: for all nodes, all keys in the left subtree must be smaller and all keys in the right subtree must be

larger than the root node
- balanced: for all nodes, there can be no more than a difference of 1 in the height of the left subtree from the right.

Math.abs(height(left subtree) – height(right subtree)) ≤ 1

AVL stands for Adelson-Velsky and Landis (the inventors of the data structure)

CSE 373 SP 18 - KASEY CHAMPION 23

Two AVL Cases

CSE 373 SP 18 - KASEY CHAMPION 24

1

3

2

1

2

3

Line Case
Solve with 1 rotation

Kink Case
Solve with 2 rotations

3

2

1

Rotate Right
Parent’s left becomes child’s right
Child’s right becomes its parent

Rotate Left
Parent’s right becomes child’s left
Child’s left becomes its parent

3

1

2

Right Kink Resolution
Rotate subtree left
Rotate root tree right

Left Kink Resolution
Rotate subtree right
Rotate root tree left

Hashing

CSE 373 SP 18 - KASEY CHAMPION 25

Implement First Hash Function
public V get(int key) {

int newKey = getKey(key);
this.ensureIndexNotNull(key);
return this.data[key].value;

}

public void put(int key, int value) {
this.array[getKey(key)] = value;

}
public void remove(int key) {

int newKey = getKey(key);
this.entureIndexNotNull(key);
this.data[key] = null;

}
public int getKey(int value) {

return value % this.data.length;
}

26

SimpleHashMap<Integer>

put mod key by table size, put item at
result
get mod key by table size, get item at
result
containsKey mod key by table size,
return data[result] == null remove mod
key by table size, nullify element at
result
size return count of items in
dictionary

state

behavior

Data[]
size

CSE 373 SP 18 - KASEY CHAMPION

First Hash Function: % table size

indices 0 1 2 3 4 5 6 7 8 9

element
s

27

put(0, “foo”);
put(5, “bar”);
put(11, “biz”)
put(18, “bop”);
put(20, “poo”); Collision!

“foo”

0 % 10 = 0
5 % 10 = 5
11 % 10 = 1
18 % 10 = 8
20 % 10 = 0

“bop”“bar”“biz”“poo”

CSE 373 SP 18 - KASEY CHAMPION

Handling Collisions
Solution 1: Chaining
Each space holds a “bucket” that can store multiple
values. Bucket is often implemented with a LinkedList

28

Operation Array w/ indices as keys

put(key,value)

best O(1)

average O(1 + λ)

worst O(n)

get(key)

best O(1)

average O(1 + λ)

worst O(n)

remove(key)

best O(1)

average O(1 + λ)

worst O(n)

Average Case:
Depends on average number of
elements per chain

Load Factor λ
If n is the total number of key-
value pairs
Let c be the capacity of array
Load Factor λ = !"

1

2
3
4
5
6
7
8

1

9

0
indices

13

22

7

44

21

CSE 373 SP 18 - KASEY CHAMPION

Handling Collisions

Solution 2: Open Addressing
Resolves collisions by choosing a different location to tore a value if natural choice is already full.

CSE 373 SP 18 - KASEY CHAMPION 29

Type 1: Linear Probing

If there is a collision, keep checking the next element
until we find an open spot.
public int hashFunction(String s)

int naturalHash = this.getHash(s);
if(natural hash in use) {

int i = 1;
while (index in use) {

try (naturalHash + i);
i++;

Type 2: Quadratic Probing

If we collide instead try the next i2 space
public int hashFunction(String s)

int naturalHash = this.getHash(s);
if(natural hash in use) {

int i = 1;
while (index in use) {

try (naturalHash + i * i);
i++;

Linear Probing

0 1 2 3 4 5 6 7 8 9

CSE 373 SP 18 - KASEY CHAMPION 30

Insert the following values into the Hash Table using a hashFunction of % table size and
linear probing to resolve collisions
1, 5, 11, 7, 12, 17, 6, 25

1 511 712 17625

Quadratic Probing

CSE 373 SP 18 - KASEY CHAMPION 31

0 1 2 3 4 5 6 7 8 9

(49 % 10 + 0 * 0) % 10 = 9
(49 % 10 + 1 * 1) % 10 = 0

(58 % 10 + 0 * 0) % 10 = 8
(58 % 10 + 1 * 1) % 10 = 9
(58 % 10 + 2 * 2) % 10 = 2

8918 49

Insert the following values into the Hash Table using a hashFunction of % table size and
quadratic probing to resolve collisions
89, 18, 49, 58, 79

58 79

(79 % 10 + 0 * 0) % 10 = 9
(79 % 10 + 1 * 1) % 10 = 0
(79 % 10 + 2 * 2) % 10 = 3

Problems:
If λ≥ ½ we might never find an empty spot

Infinite loop!
Can still get clusters

Handling Collisions

public int hashFunction(String s)
int naturalHash = this.getHash(s);
if(natural hash in use) {

int i = 1;
while (index in use) {

try (naturalHash + i * jump_Hash(key));
i++;

CSE 373 SP 18 - KASEY CHAMPION 32

Solution 3: Double Hashing
If the natural hash location is taken, apply a second and separate hash function to find a new
location. h’(k, i) = (h(k) + i * g(k)) % T

Homework

CSE 373 SP 18 - KASEY CHAMPION 33

Homework 2

ArrayDictionary<K, V>

34CSE 373 19 WI - KASEY CHAMPION

Function Best case Worst case
get(K key) O(1)

Key is first item looked at
O(n)
Key is not found

put(K key, V value) O(1)
Key is first item looked at

2n -> O(n)
N search, N resizing

remove(K key) O(1)
Key is first item looked at

O(n)
N search, C swapping

containsKey(K key) O(1)
Key is first item looked at

O(n)
Key is not found

size() O(1)
Return field

O(1)
Return field

DoubleLinkedList<T>

Function Best case Worst case
get(int index) O(1)

Index is 0 or size
n/2 -> O(n)
Index is size/2

add(T item) O(1)
Item added to back

O(1)
Item added to back

remove() O(1)
Item removed from back

O(1)
Item removed from
back

delete(int index) O(1)
Index is 0 or size

n/2 -> O(n)
Index is size/2

set(int index, T
item)

O(1)
Index is 0 or size

n/2 -> O(n)
Index is size/2

insert(int index, T
item)

O(1)
Index is 0 or size

n/2 -> O(n)
Index is size/2

