

## Lecture 14: Midterm Review

Data Structures and Algorithms

## Administrivia

HW 3 is due today

- you get 2 more late days for the quarter

HW 4 is out later today

Midterm Prep

- Attend section tomorrow, solutions have already been posted
- Review TONIGHT in PAA 102 4-5:50, panopto will be available
- Erik filmed a review session, check it out on the website

### A message about grades...

## Midterm Logistics

50 minutes

8.5 x 11 in note page, front and back

Math identities sheet provided (see posted on website)

We will be scanning your exams to grade...

- Do not write on the back of pages
- Try not to cram answers into margins or corners



## Asymptotic Analysis

**asymptotic analysis** – the process of mathematically representing runtime of a algorithm in relation to the number of inputs and how that relationship changes as the number of inputs grow

#### Two step process

- 1. Model the process of mathematically representing how many operations a piece of code will run in relation to the number of inputs n
- 2. Analyze compare runtime/input relationship across multiple algorithms
  - 1. Graph the model of your code where x = number of inputs and y = runtime
  - 2. For which inputs will one perform better than the other?

## Code Modeling

**code modeling** – the process of mathematically representing how many operations a piece of code will run in relation to the number of inputs n

Examples:

- Sequential search f(n) = n
- Binary search  $f(n) = log_2 n$

#### What counts as an "operation"?

#### **Basic operations**

- Adding ints or doubles
- Variable assignment
- Variable update
- Return statement
- Accessing array index or object field

#### **Consecutive statements**

- Sum time of each statement

#### Assume all operations run in equivalent time

#### **Function calls**

- Count runtime of function body

#### Conditionals

- Time of test + worst case scenario branch

#### Loops

 Number of iterations of loop body x runtime of loop body

## Code Modeling

```
public int mystery(int n) {
   int result = 0; +1
   for (int i = 0; i < n/2; i++) {
                                            - n/2
       result++; +1
    }
   for (int i = 0; i < n/2; i+=2)
                                             n/4
       result++; +1
    }
   result * 10; +1
                                  f(n) = 3 + \frac{3}{4}n = C_1 + \frac{3}{4}n
   return result; +1
```

## Code Modeling Example

```
public String mystery (int n) {
    ChainedHashDictionary<Integer, Character> alphabet =
+1
                                               new ChainedHashDictionary<Integer, Character>();
    for (int i = 0; i < 26; i++)
                                        +26
       char c = 'a' + (char)i;
       alphabet.put(i, c);
+1 DoubleLinkedList<Character> result = new DoubleLinkedList<Character>();
    for (int i = 0; i < n; i += 2) {
       char c = alphabet.get(i);+26
                                           – n/2
       result.add(c); +1
+1 String final = "";
   for (int i = 0; i < result.size(); i++) {</pre>
                                                     - n/2
       final += result.remove();+1
+1 return final;
                                                                            \left(\frac{n}{2}\right) + \frac{n}{2} = C_1 + C_2 n
                                                         f(n) = 4 + 26 + 27
```

### Function growth

Imagine you have three possible algorithms to choose between. Each has already been reduced to its mathematical model

$$f(n) = n \qquad g(n) = 4n \qquad h(n) = n^2$$



n)



The growth rate for f(n) and g(n) looks very different for small numbers of input

...but since both are linear eventually look similar at large input sizes

whereas h(n) has a distinctly different growth rate

But for very small input values h(n) actually has a slower growth rate than either f(n) or g(n)

## O, $\Omega$ , $\Theta$ Definitions

**O(f(n))** is the "family" or "set" of all functions that <u>are dominated by</u> f(n)

- $f(n) \in O(g(n))$  when  $f(n) \leq g(n)$
- The upper bound of an algorithm's function

# $\Omega(f(n))$ is the family of all functions that <u>dominate</u> f(n)

- $f(n) \in \Omega(g(n))$  when  $f(n) \ge g(n)$
- The lower bound of an algorithm's function

# **O(f(n))** is the family of functions that are equivalent to f(n)

- We say  $f(n) \in \Theta(g(n))$  when both
- $f(n) \in O(g(n))$  and  $f(n) \in \Omega(g(n))$  are true
- A direct fit of an algorithm's function

#### Big-O

 $f(n) \in O(g(n))$  if there exist positive constants  $c, n_0$  such that for all  $n \ge n_0$ ,  $f(n) \le c \cdot g(n)$ 

#### **Big-Omega**

 $f(n) \in \Omega(g(n))$  if there exist positive constants  $c, n_0$  such that for all  $n \ge n_0$ ,  $f(n) \ge c \cdot g(n)$ 

#### Big-Theta

 $f(n) \in \Theta(g(n))$  if f(n) is O(g(n)) and f(n) is  $\Omega(g(n))$ .

### **Proving Domination**

f(n) = 5(n + 2)

 $g(n) = 2n^2$ 

Find a c and  $n_0$  that show that  $f(n) \in O(g(n))$ .

f(n) = 5(n + 2) = 5n + 10  $5n \le c \cdot 2n^2$  for c = 3 when  $n \ge 1$   $10 \le c \cdot 2n^2$  for c = 5 when  $n \ge 1$   $5n + 10 \le 3(2n^2) + 5(2n^2)$  when  $n \ge 1$   $5n + 10 \le 8(2n^2)$  when  $n \ge 1$  $f(n) \le c \cdot g(n)$  when c = 8 and  $n_0 = 1$ 

#### Big-O

 $f(n) \in O(g(n))$  if there exist positive constants  $c, n_0$  such that for all  $n \ge n_0$ ,  $f(n) \le c \cdot g(n)$ 



## O, Ω, Θ Examples

For the following functions give the simplest tight O bound

a(n) = 10logn + 5O(logn) $b(n) = 3^n - 4n$  $O(3^n)$  $c(n) = \frac{n}{2}$ O(n)

For the above functions indicate whether the following are true or false

| $a(n) \in O(b(n))$      | TRUE  | $b(n) \in O(a(n))$      | FALSE | $c(n) \in O(b(n))$      | TRUE  |
|-------------------------|-------|-------------------------|-------|-------------------------|-------|
| $a(n) \in O(c(n))$      | TRUE  | $b(n) \in O(c(n))$      | FALSE | $c(n) \in O(a(n))$      | FALSE |
| $a(n)\in \Omega(b(n))$  | FALSE | $b(n)\in\Omega(a(n))$   | TRUE  | $c(n) \in \Omega(b(n))$ | FALSE |
| $a(n) \in \Omega(c(n))$ | FALSE | $b(n)\in \Omega(c(n))$  | TRUE  | $c(n) \in \Omega(a(n))$ | TRUE  |
| $a(n)\in \Theta(b(n))$  | FALSE | $b(n) \in \Theta(a(n))$ | FALSE | $c(n) \in \Theta(b(n))$ | FALSE |
| $a(n) \in \Theta(c(n))$ | FALSE | $b(n) \in \Theta(c(n))$ | FALSE | $c(n) \in \Theta(a(n))$ | FALSE |
| $a(n) \in \Theta(a(n))$ | TRUE  | $b(n) \in \Theta(b(n))$ | TRUE  | $c(n) \in \Theta(c(n))$ | TRUE  |

## **Review:** Complexity Classes

**complexity class** – a category of algorithm efficiency based on the algorithm's relationship to the input size N

| Class       | Big O                  | If you double N            | Example algorithm                     |
|-------------|------------------------|----------------------------|---------------------------------------|
| constant    | O(1)                   | unchanged                  | Add to front of<br>linked list        |
| logarithmic | O(log <sub>2</sub> n)  | Increases slightly         | Binary search                         |
| linear      | O(n)                   | doubles                    | Sequential search                     |
| log-linear  | O(nlog <sub>2</sub> n) | Slightly more than doubles | Merge sort                            |
| quadratic   | O(n <sup>2</sup> )     | quadruples                 | Nested loops<br>traversing a 2D array |
| cubic       | O(n <sup>3</sup> )     | Multiplies by 8            | Triple nested loop                    |
| polynomial  | O(n <sup>c</sup> )     |                            |                                       |
| exponential | O(c <sup>n</sup> )     | Multiplies<br>drastically  |                                       |



## Modeling Complex Loops

for (int i = 0; i < n; i++) {  
for (int j = 0; j < i; j++) {  
System.out.println("Hello!"); +c  
}  
Summation  

$$1+2+3+4+...+n = \sum_{i=1}^{n} i$$
  
Definition: Summation

$$\sum_{i=1}^{n} f(i) = f(a) + f(a+1) + f(a+2) + \dots + f(b-2) + f(b-1) + f(b)$$

$$T(n) = \sum_{i=0}^{n-1} \sum_{j=0}^{i-1} c$$

 $\overline{i=a}$ 

### **Function Modeling: Recursion**

```
public int factorial(int n) {
    if (n == 0 || n == 1) {
        return 1;
    } else {
        return n * factorial(n - 1); +T(n-1)
        +c<sub>2</sub>
```

$$T(n) = - \begin{cases} C_1 & \text{when } n = 0 \text{ or } 1 \\ C_2 + T(n-1) & \text{otherwise} \end{cases}$$

#### Definition: Recurrence

Mathematical equivalent of an if/else statement f(n) = {runtime of base case when conditional runtime of recursive case otherwise

## Tree Method Formulas

$$T(n) = -\begin{cases} 1 \text{ when } n \le 1\\ 2T\left(\frac{n}{2}\right) + n \text{ otherwise} \end{cases}$$

#### How much work is done by recursive levels (branch nodes)?

- 1. How many recursive calls are on the i-th level of the tree?
  - i = 0 is overall root level
- 2. At each level i, how many inputs does a single node process?
- 3. How many recursive levels are there?
  - Based on the pattern of how we get down to base case

*Recursive* work =

$$\sum_{i=1}^{branchCount} branchNum(i)branchWork(i)$$

numberNodesPerLevel(i) =  $2^{i}$ 

inputsPerRecursiveCall(i) =  $(n/2^{i})$ 

branchCount = 
$$\log_2 n - 1$$

leafWork = 1

$$T(n > 1) = \sum_{i=0}^{\log_2 n - 1} 2^i \left(\frac{n}{2^i}\right)$$

#### How much work is done by the base case level (leaf nodes)?

How much work is done by a single leaf node?
 How many leaf nodes are there?

total work = recursive work + nonrecursive work =

leafCount =  $2^{\log_2 n} = n$ 

 $NonRecursive work = leafWork \times leafCount = leafWork \times branchNum^{numLevels}$ 

$$T(n \le 1) = 1(2^{\log_2 n}) = n$$

$$T(n) = \sum_{i=0}^{\log_2 n-1} 2^i \left(\frac{n}{2^i}\right) + n = n \log_2 n + n$$

### Tree Method Example

$$T(n) = -\begin{cases} 3 \text{ when } n = 1\\ 3T\left(\frac{n}{3}\right) + n \text{ otherwise} \end{cases}$$

Size of input at level i?  $\frac{n}{3^i}$ 

Number of nodes at level i?  $3^i$ 

How many nodes are on the bottom level?  $3^{\log_3(n)} = n$ 

How much work done in base case? 3n

How many levels of the tree?  $\log_3(n)$ 

Total recursive work

$$\sum_{i=0}^{\log_3 n - 1} \frac{n}{3^i} 3^i = n \log_3(n)$$

 $T(n) = n \log_3(n) + 3n$ 

## **Reflecting on Master Theorem**

Given a recurrence of the form:  

$$T(n) = \begin{cases} d \text{ when } n = 1 \\ aT\left(\frac{n}{b}\right) + n^c \text{ otherwise} \end{cases}$$
If  $\log_b a < c$  then  $T(n) \in \Theta(n^c)$   
If  $\log_b a = c$  then  $T(n) \in \Theta(n^c \log_2 n)$   
If  $\log_b a > c$  then  $T(n) \in \Theta(n^{\log_b a})$ 

The  $\log_b a < c$  case

- Recursive case conquers work more quickly than it divides work
- Most work happens near "top" of tree
- Non recursive work in recursive case dominates growth, n<sup>c</sup> term

The  $\log_b a = c$  case

- Work is equally distributed across call stack (throughout the "tree")
- Overall work is approximately work at top level x height

height  $\approx \log_b a$ branchWork  $\approx n^c \log_b a$ leafWork  $\approx d(n^{\log_b a})$ 

The  $\log_b a > c$  case

- Recursive case divides work faster than it conquers work
- Most work happens near "bottom" of tree
- Leaf work dominates branch work

## Master Theorem Example

$$T(n) = -\begin{cases} 3 \text{ when } n = 1\\ 3T\left(\frac{n}{3}\right) + n \text{ otherwise} \end{cases}$$

$$a = 3$$
  

$$b = 3$$
  

$$c = 1$$
  

$$\log_3 3 = 1$$
  

$$T(n) \text{ is in } \theta(n \log n)$$

Given a recurrence of the form:  

$$T(n) = \begin{bmatrix} d & when & n = 1 \\ aT\left(\frac{n}{b}\right) + n^c & otherwise \end{bmatrix}$$
If  $\log_b a < c$  then  $T(n) \in \Theta(n^c)$   
If  $\log_b a = c$  then  $T(n) \in \Theta(n^c \log n)$   
If  $\log_b a > c$  then  $T(n) \in \Theta(n^{\log_b a})$ 



## **Binary Search Trees**

A **binary search tree** is a <u>binary tree</u> that contains comparable items such that for every node, <u>all</u> <u>children to the left contain smaller data</u> and <u>all children to the right contain larger data</u>.



### Meet AVL Trees

#### AVL Trees must satisfy the following properties:

- binary trees: all nodes must have between 0 and 2 children
- binary search tree: for all nodes, all keys in the left subtree must be smaller and all keys in the right subtree must be larger than the root node
- balanced: for all nodes, there can be no more than a difference of 1 in the height of the left subtree from the right.
   Math.abs(height(left subtree) height(right subtree)) ≤ 1

AVL stands for Adelson-Velsky and Landis (the inventors of the data structure)

## Two AVL Cases

#### Line Case

Solve with 1 rotation





#### **Rotate Right**

Parent's left becomes child's right Child's right becomes its parent

#### **Rotate Left**

Parent's right becomes child's left Child's left becomes its parent **Right Kink Resolution** Rotate subtree left Rotate root tree right

#### Kink Case Solve with 2 rotations



Left Kink Resolution Rotate subtree right Rotate root tree left



### **Implement First Hash Function**

```
public V get(int key)
   int newKey = getKey(key);
   this.ensureIndexNotNull(key);
   return this.data[key].value;
public void put(int key, int value) {
    this.array[getKey(key)] = value;
public void remove(int key) {
   int newKey = getKey(key);
   this.entureIndexNotNull(key);
   this.data[key] = null;
public int getKey(int value) {
   return value % this.data.length;
```

#### SimpleHashMap<Integer>

| <b>state</b><br>Data[]<br>size                                             |
|----------------------------------------------------------------------------|
| <b>behavior</b><br><u>put</u> mod key by table size, put item at<br>result |
| get mod key by table size, get item at                                     |
| result<br><u>containsKey</u> mod key by table size,                        |
| key by table size, nullify element at result                               |
| <u>size</u> return count of items in<br>dictionary                         |

### First Hash Function: % table size





## Handling Collisions

#### **Solution 1: Chaining**

Each space holds a "bucket" that can store multiple values. Bucket is often implemented with a LinkedList

| Oper           | Array w/ indices as keys |          |
|----------------|--------------------------|----------|
|                | best                     | O(1)     |
| put(key,value) | average                  | Ο(1 + λ) |
|                | worst                    | O(n)     |
|                | best                     | O(1)     |
| get(key)       | average                  | Ο(1 + λ) |
|                | worst                    | O(n)     |
|                | best                     | O(1)     |
| remove(key)    | average                  | Ο(1 + λ) |
|                | worst                    | O(n)     |

indices



#### Average Case:

Depends on average number of elements per chain

#### Load Factor $\boldsymbol{\lambda}$

If n is the total number of keyvalue pairs Let c be the capacity of array Load Factor  $\lambda = \frac{n}{c}$ 

## Handling Collisions

#### **Solution 2: Open Addressing**

Resolves collisions by choosing a different location to tore a value if natural choice is already full.

#### Type 1: Linear Probing

```
If there is a collision, keep checking the next element
until we find an open spot.
public int hashFunction(String s)
    int naturalHash = this.getHash(s);
    if(natural hash in use) {
        int i = 1;
        while (index in use) {
            try (naturalHash + i);
            i++;
```

#### Type 2: Quadratic Probing

```
If we collide instead try the next i<sup>2</sup> space
public int hashFunction(String s)
    int naturalHash = this.getHash(s);
    if(natural hash in use) {
        int i = 1;
        while (index in use) {
            try (naturalHash + i * i);
            i++;
```

## Linear Probing

Insert the following values into the Hash Table using a hashFunction of % table size and linear probing to resolve collisions

1, 5, 11, 7, 12, 17, 6, 25



## **Quadratic Probing**

Insert the following values into the Hash Table using a hashFunction of % table size and quadratic probing to resolve collisions

89, 18, 49, 58, 79

| 0 | 1 | 2  | 3  | 4 | 5 | 6 | 7 | 8  | 9         |
|---|---|----|----|---|---|---|---|----|-----------|
|   |   | 58 | 79 |   |   |   |   | 18 | <b>49</b> |

```
(49 \% 10 + 0 * 0) \% 10 = 9

(49 \% 10 + 1 * 1) \% 10 = 0

(58 \% 10 + 0 * 0) \% 10 = 8

(58 \% 10 + 1 * 1) \% 10 = 9

(58 \% 10 + 2 * 2) \% 10 = 2

(79 \% 10 + 0 * 0) \% 10 = 9

(79 \% 10 + 1 * 1) \% 10 = 0

(79 \% 10 + 2 * 2) \% 10 = 3
```

## Handling Collisions

#### **Solution 3: Double Hashing**

If the natural hash location is taken, apply a second and separate hash function to find a new location. h'(k, i) = (h(k) + i \* g(k)) % T

```
public int hashFunction(String s)
int naturalHash = this.getHash(s);
if(natural hash in use) {
    int i = 1;
    while (index in use) {
        try (naturalHash + i * jump_Hash(key));
        i++;
```



## Homework 2

#### ArrayDictionary<K, V>

| Function            | Best case                           | Worst case                         |  |
|---------------------|-------------------------------------|------------------------------------|--|
| get(K key)          | O(1)<br>Key is first item looked at | O(n)<br>Key is not found           |  |
| put(K key, V value) | O(1)<br>Key is first item looked at | 2n -> O(n)<br>N search, N resizing |  |
| remove(K key)       | O(1)<br>Key is first item looked at | O(n)<br>N search, C swapping       |  |
| containsKey(K key)  | O(1)<br>Key is first item looked at | O(n)<br>Key is not found           |  |
| size()              | O(1)<br>Return field                | O(1)<br>Return field               |  |

#### DoubleLinkedList<T>

| Function                     | Best case                      | Worst case                        |
|------------------------------|--------------------------------|-----------------------------------|
| get(int index)               | O(1)<br>Index is 0 or size     | n/2 -> O(n)<br>Index is size/2    |
| add(T item)                  | O(1)<br>Item added to back     | O(1)<br>Item added to back        |
| remove()                     | O(1)<br>Item removed from back | O(1)<br>Item removed from<br>back |
| delete(int index)            | O(1)<br>Index is 0 or size     | n/2 -> O(n)<br>Index is size/2    |
| set(int index, T<br>item)    | O(1)<br>Index is 0 or size     | n/2 -> O(n)<br>Index is size/2    |
| insert(int index, T<br>item) | O(1)<br>Index is 0 or size     | n/2 -> O(n)<br>Index is size/2    |