
Lecture 12: Hash Open 
Indexing Data Structures and Algorithms

CSE 373 19 SP - KASEY CHAMPION 1



Linear Probing

CSE 373 SP 18 - KASEY CHAMPION 2

0 1 2 3 4 5 6 7 8 9

Insert the following values into the Hash Table using a hashFunction of % table size and 
linear probing to resolve collisions
38, 19, 8, 109, 10

38 1988 10910

Problem:
• Linear probing causes clustering
• Clustering causes more looping when probing

Primary Clustering
When probing causes long chains of 
occupied slots within a hash table

3 Minutes



Administrivia
HW 4 Partner Form due tonight 11:59pm

HW 3 code modeling got more details

Midterm Friday
- Debugging
- More office hours today
- Review session on Wednesday 4pm – 5:50pm PAA A102

CSE 373 19 SP - KASEY CHAMPION 3



Runtime
When is runtime good?
Empty table

When is runtime bad?
Table nearly full
When we hit a “cluster”

Maximum Load Factor?
λ at most 1.0

When do we resize the array?
λ ≈ ½ 

CSE 373 SP 18 - KASEY CHAMPION 4

2 Minutes



Can we do better?
Clusters are caused by picking new space near natural index

Solution 2: Open Addressing
Type 2: Quadratic Probing

If we collide instead try the next i2 space
public int hashFunction(String s) 

int naturalHash = this.getHash(s);
if(natural hash in use) {

int i = 1;
while (index in use) {

try (naturalHash + i);
i++;

CSE 373 SP 18 - KASEY CHAMPION 5

i * i);



Quadratic Probing

CSE 373 SP 18 - KASEY CHAMPION 6

0 1 2 3 4 5 6 7 8 9

(49 % 10 + 0 * 0) % 10 = 9
(49 % 10 + 1 * 1) % 10 = 0

(58 % 10 + 0 * 0) % 10 = 8
(58 % 10 + 1 * 1) % 10 = 9
(58 % 10 + 2 * 2) % 10 = 2

8918 49

Insert the following values into the Hash Table using a hashFunction of % table size and 
quadratic probing to resolve collisions
89, 18, 49, 58, 79

58 79

(79 % 10 + 0 * 0) % 10 = 9
(79 % 10 + 1 * 1) % 10 = 0
(79 % 10 + 2 * 2) % 10 = 3

Problems:
If λ≥ ½ we might never find an empty spot

Infinite loop!
Can still get clusters



Secondary Clustering

CSE 373 SP 18 - KASEY CHAMPION 7

0 1 2 3 4 5 6 7 8 9

Insert the following values into the Hash Table using a hashFunction of % table size and 
quadratic probing to resolve collisions
19, 39, 29, 9

39 29 199

Secondary Clustering
When using quadratic probing sometimes need 
to probe the same sequence of table cells, not 
necessarily next to one another

3 Minutes



Probing
- h(k) = the natural hash 
- h’(k, i) = resulting hash after probing
- i = iteration of the probe
- T = table size

Linear Probing:
h’(k, i) = (h(k) + i) % T

Quadratic Probing
h’(k, i) = (h(k) + i2) % T

For both types there are only O(T) probes available
- Can we do better?

CSE 373 SP 18 - KASEY CHAMPION 8



Double Hashing
Probing causes us to check the same indices over and over- can we check different ones instead?

Use a second hash function!

h’(k, i) = (h(k) + i * g(k)) % T

public int hashFunction(String s) 
int naturalHash = this.getHash(s);
if(natural hash in use) {

int i = 1;
while (index in use) {

try (naturalHash + i * jump_Hash(key));
i++;

CSE 373 SP 18 - KASEY CHAMPION 9

<- Most effective if g(k) returns value prime to table size



Second Hash Function
Effective if g(k) returns a value that is relatively prime to table size
- If T is a power of 2, make g(k) return an odd integer
- If T is a prime, make g(k) return any smaller, non-zero integer

- g(k) = 1 + (k % T(-1))

How many different probes are there?
- T different starting positions
- T – 1 jump intervals
- O(T2) different probe sequences

- Linear and quadratic only offer O(T) sequences

CSE 373 SP 18 - KASEY CHAMPION 10



Resizing
How do we resize?
- Remake the table
- Evaluate the hash function over again.
- Re-insert.

When to resize?
- Depending on our load factor !
-Heuristic: 

- for separate chaining ! between 1 and 3 is a good time to resize.
- For open addressing ! between 0.5 and 1 is a good time to resize.



What are the running times for: 
insert

Best: !(1)
Worst: !(%) (if insertions are always at the end of the linked list)

find
Best:  !(1)
Worst: !(%)

delete 
Best: !(1)
Worst: !(%)

Separate chaining: Running Times

CSE 332 SU 18 – ROBBIE WEBER



Linear probing: Average-case insert 
If ! < 1 we’ll find a spot eventually.
What’s the average running time?

If find is unsuccessful: $% 1 + $
$'( )

If find is successful: $% 1 + $
($'()

We won’t ask you to prove these

for any pair of elements x, y 
the probability that h(x) = h(y) is $

,-./01230

Uniform Hashing Assumption

CSE 332 SU 18 – ROBBIE WEBER



Summary
1. Pick a hash function to:
- Avoid collisions
- Uniformly distribute data
- Reduce hash computational costs

2. Pick a collision strategy
- Chaining

- LinkedList
- AVL Tree

- Probing
- Linear
- Quadratic

- Double Hashing

CSE 373 SP 18 - KASEY CHAMPION 14

No clustering
Potentially more “compact” (λ can be higher)

Managing clustering can be tricky
Less compact (keep λ < ½)
Array lookups tend to be a constant factor faster than traversing pointers



Summary

Separate Chaining
- Easy to implement
- Running times !(1 + %)
Open Addressing
- Uses less memory.
- Various schemes:
- Linear Probing – easiest, but need to resize most frequently
- Quadratic Probing – middle ground
- Double Hashing – need a whole new hash function, but low chance of clustering.

Which you use depends on your application and what you’re worried about.



- Cryptographic hash functions: Hash functions with some additional properties
- Commonly used in practice: SHA-1, SHA-265
- To verify file integrity. When you share a large file with someone, how do you know that the other person got the exact same 

file? Just compare hash of the file on both ends. Used by file sharing services (Google Drive, Dropbox)
- For password verification: Storing passwords in plaintext is insecure. So your passwords are stored as a hash.
- For Digital signature
- Lots of other crypto applications

- Finding similar records: Records with similar but not identical keys
- Spelling suggestion/corrector applications
- Audio/video fingerprinting
- Clustering

- Finding similar substrings in a large collection of strings
- Genomic databases
- Detecting plagiarism

- Geometric hashing: Widely used in computer graphics and computational geometry

Other applications of hashing

CSE 373 AU 18 – SHRI MARE 16



Wrap Up

Hash Tables:
- Efficient find, insert, delete on average, under some assumptions
- Items not in sorted order
- Tons of real world uses
- …and really popular in tech interview questions. 

Need to pick a good hash function.
- Have someone else do this if possible.
- Balance getting a good distribution and speed of calculation.

Resizing:
- Always make the table size a prime number.
-! determines when to resize, but depends on collision resolution strategy.



ADT Review

CSE 373 SP 18 - KASEY CHAMPION 18



List ADT

19CSE 373 19 WI - KASEY CHAMPION

List ADT

get(index) return item at index
set(item, index) replace item at index
append(item) add item to end of list
insert(item, index) add item at index
delete(index) delete item at index
size() count of items

state

behavior
Set of ordered items
Count of items

ArrayList<E>

get return data[index]
set data[index] = value
append data[size] = 
value, if out of space 
grow data
insert shift values to 
make hole at index, 
data[index] = value, if 
out of space grow data
delete shift following 
values forward
size return size 

state

behavior

data[]
size

LinkedList<E>

get loop until index, 
return node’s value
set loop until index, 
update node’s value
append create new node, 
update next of last node
insert create new node, 
loop until index, update 
next fields
delete loop until index, 
skip node
size return size 

state

behavior

Node front
size

ArrayList
uses an Array as underlying storage

LinkedList
uses nodes as underlying storage

0 1 2 3 4

88.6 26.1 94.4 0 0
88.6 26.1 94.4

list free space



Stack ADT
stack: A collection based on the principle of adding elements 
and retrieving them in the opposite order.
- Last-In, First-Out ("LIFO")
- Elements are stored in order of insertion.

- We do not think of them as having indexes.

- Client can only add/remove/examine 
the last element added (the "top").

CSE 143 SP 17 – ZORA FUNG 20

top 3
2

bottom 1

pop, peekpush

Stack ADT

push(item) add item to top
pop() return and remove 
item at top
peek() look at item at top
size() count of items
isEmpty() count of items is 0?

state

behavior
Set of ordered items
Number of items

ArrayStack<E>

push data[size] = value, if 
out of room grow data
pop return data[size - 1], 
size-1
peek return data[size - 1]
size return size
isEmpty return size == 0

state

behavior

data[]
size

LinkedStack<E>

push add new node at top
pop return and remove node at 
top
peek return node at top
size return size
isEmpty return size == 0

state

behavior

Node top
size



Queue ADT

queue: Retrieves elements in the order they were added.
- First-In, First-Out ("FIFO")

- Elements are stored in order of insertion but don't have indexes.

- Client can only add to the end of the queue, and can only 
examine/remove the front of the queue.

CSE 143 SP 17 – ZORA FUNG 21

front back
1 2 3

addremove, peek

Queue ADT

add(item) add item to back 
remove() remove and return 
item at front
peek() return item at front
size() count of items
isEmpty() count of items is 0?

state

behavior
Set of ordered items
Number of items

ArrayQueue<E>

add – data[size] = value, if 
out of room grow data
remove – return data[size -
1], size-1
peek – return data[size - 1]
size – return size
isEmpty – return size == 0

state

behavior

data[]
Size
front index
back index

LinkedQueue<E>

add – add node to back
remove – return and remove 
node at front
peek – return node at front
size – return size
isEmpty – return size == 0

state

behavior

Node front
Node back
size



Map/Dictionary ADT
dictionary: Holds a set of unique keys and a collection 
of values, where each key is associated with one value.
- a.k.a. "dictionary", "associative array", "hash"

CSE 143 SP 17 – ZORA FUNG 22

key value

“you" 22

key value

“in" 37

key value

“the" 56

key value

“at" 43

map.get("the") 56

Dictionary ADT

put(key, item) add item to 
collection indexed with key
get(key) return item 
associated with key
containsKey(key) return if key 
already in use
remove(key) remove item 
and associated key
size() return count of items

state

behavior
Set of items & keys
Count of items

ArrayDictionary<K, V>

put create new pair, add to 
next available spot, grow 
array if necessary
get scan all pairs looking 
for given key, return 
associated item if found
containsKey scan all pairs, 
return if key is found
remove scan all pairs, 
replace pair to be removed 
with last pair in collection
size return count of items in 
dictionary

state

behavior

Pair<K, V>[] data
LinkedDictionary<K, V>

put if key is unused, create new with 
pair, add to front of list, else 
replace with new value
get scan all pairs looking for given 
key, return associated item if found
containsKey scan all pairs, return if 
key is found
remove scan all pairs, skip pair to be 
removed 
size return count of items in 
dictionary

state

behavior

front
size



Binary Search Trees
A binary search tree is a binary tree that contains comparable 
items such that for every node, all children to the left contain 
smaller data and all children to the right contain larger data.

CSE 373 SP 18 - KASEY CHAMPION 23

10

9 15

7 12 18

Binary Search Trees allow us to:
- quickly find what we’re looking for
- add and remove values easily

Dictionary Operations:
Runtime in terms of height, “h”
get() – O(h)
put() – O(h)
remove() – O(h)

What do you replace the node with?
Largest in left sub tree or smallest in right sub tree

TreeDictionary<K, V>

put if key is unused, 
create new pair, place in 
BST order, rotate to 
maintain balance
get traverse through tree 
using BST property, 
return item if found
containsKey traverse 
through tree using BST 
property, return if key 
is found
remove traverse through 
tree using BST property, 
replace or nullify as 
appropriate
size return count of 
items in dictionary

state

behavior

overallRoot
size



Meet AVL Trees
AVL Trees must satisfy the following properties: 
- binary trees: all nodes must have between 0 and 2 children
- binary search tree: for all nodes, all keys in the left subtree must be smaller and all keys in the right subtree must be 

larger than the root node
- balanced: for all nodes, there can be no more than a difference of 1 in the height of the left subtree from the right. 

Math.abs(height(left subtree) – height(right subtree)) ≤ 1

AVL stands for Adelson-Velsky and Landis (the inventors of the data structure)

CSE 373 SP 18 - KASEY CHAMPION 24

Dictionary Operations:

get() – same as BST

containsKey() – same as BST

put() – same as BST + rebalance

remove() – same as BST + rebalance



How long does AVL insert take?

AVL insert time = BST insert time + time it takes to rebalance the tree

= O(log n) + time it takes to rebalance the tree

How long does rebalancing take?
- Assume we store in each node the height of its subtree.
- How long to find an unbalanced node:

- Just go back up the tree from where we inserted. 

- How many rotations might we have to do?
- Just a single or double rotation on the lowest unbalanced node. 

AVL insert time = O(log n)+ O(log n) + O(1) = O(log n)

ß O(log n)

ß O(1)

CSE 373 AU 18 – SHRI MARE



Review: Dictionaries

Why are we so obsessed with Dictionaries? 

CSE 373 SP 18 - KASEY CHAMPION 26

It’s all about data baby!Dictionary ADT

put(key, item) add item to 
collection indexed with key
get(key) return item 
associated with key
containsKey(key) return if key 
already in use
remove(key) remove item 
and associated key
size() return count of items

state

behavior
Set of items & keys
Count of items

When dealing with data:
• Adding data to your collection
• Getting data out of your collection
• Rearranging data in your collection

Operation ArrayList LinkedList BST AVLTree

put(key,value)

best O(1) O(1) O(1) O(1)

average O(n) O(n) O(logn) O(logn)

worst O(n) O(n) O(n) O(logn)

get(key)

best O(1) O(1) O(1) O(1)

average O(n) O(n) O(logn) O(logn)

worst O(n) O(n) O(n) O(logn)

remove(key)

best O(1) O(1) O(logn) O(logn)

average O(n) O(n) O(logn) O(logn)

worst O(n) O(n) O(n) O(logn) 

SUPER common in comp sci 
- Databases
- Network router tables
- Compilers and Interpreters



Hashing

CSE 373 SP 18 - KASEY CHAMPION 27

HashMap<Integer>

put mod key by table size, put item at 
result
get mod key by table size, get item at 
result
containsKey mod key by table size, 
return data[result] == null remove mod 
key by table size, nullify element at 
result 
size return count of items in 
dictionary

state

behavior

Data[]
size

Operation Separate 
Chaining

Probing

put(key,value)

best O(1) O(1)

average O(1 + λ) O(1 + λ)

worst O(n) O(n)

get(key)

best O(1) O(1)

average O(1 + λ) O(1 + λ)

worst O(n) O(n)

remove(key)

best O(1) O(1)

average O(1 + λ) O(1 + λ)

worst O(n) O(n)


