
Lecture 12: Hash Open
Indexing Data Structures and Algorithms

CSE 373 19 SP - KASEY CHAMPION 1

Warm Up

CSE 373 SP 18 - KASEY CHAMPION 2

Consider a StringDictionary using separate chaining with an internal capacity of 10. Assume our
buckets are implemented using a LinkedList. Use the following hash function:

public int hashCode(String input) {
return input.length() % arr.length;

}

Now, insert the following key-value pairs. What does the dictionary internally look like?

(“cat”, 1) (“bat”, 2) (“mat”, 3) (“a”, 4) (“abcd”, 5) (“abcdabcd”, 6) (“five”, 7) (“hello world”, 8)

0 1 2 3 4 5 6 7 8 9

(“cat”, 1)(“a”, 4)

(“bat”, 2) (“five”, 7)

(“mat”, 3)

(“abcd”, 5)

(“hello world”, 8)

(“abcdabcd”, 6)

Administrivia

CSE 373 19 SP - KASEY CHAMPION 3

Midterm Topics
ADTs and Data structures
- Lists, Stacks, Queues, Maps
- Array vs Node implementations of each

Asymptotic Analysis
- Proving Big O by finding C and N0

- Modeling code runtime with math functions, including
recurrences and summations

- Finding closed form of recurrences using tree method
and master theorem

- Looking at code models and giving Big O runtimes
- Definitions of Big O, Big Omega, Big Theta

CSE 373 19 SP - KASEY CHAMPION 4

BST and AVL Trees
- Binary Search Property, Balance Property
- Insertions, Retrievals
- AVL rotations

Hashing
- Understanding hash functions
- Insertions and retrievals from a table
- Collision resolution strategies: chaining, linear probing,

quadratic probing, double hashing

Homework
- ArrayDictionary
- DoubleLinkedList

Can we do better?
Idea 1: Take in better keys
- Can’t do anything about that right now

Idea 2: Optimize the bucket
- Use an AVL tree instead of a Linked List
- Java starts off as a linked list then converts to AVL tree when collisions get large

Idea 3: Modify the array’s internal capacity
- When load factor gets too high, resize array

- Double size of array
- Increase array size to next prime number that’s roughly double the array size

- Prime numbers reduce collisions when using % because of divisors
- Resize when λ ≈ 1.0
- When you resize, you have to rehash

CSE 373 SP 18 - KASEY CHAMPION 5

What about non integer keys?
Hash Function

An algorithm that maps a given key to an integer representing the index in the array for where to
store the associated value

Goals
Avoid collisions
- The more collisions, the further we move away from O(1)
- Produce a wide range of indices

Uniform distribution of outputs
- Optimize for memory usage

Low computational costs
- Hash function is called every time we want to interact with the data

CSE 373 SP 18 - KASEY CHAMPION 6

How to Hash non Integer Keys
Implementation 1: Simple aspect of values
public int hashCode(String input) {

return input.length();
}

Implementation 2: More aspects of value
public int hashCode(String input) {

int output = 0;
for(char c : input) {

out += (int)c;
}
return output;

}

Implementation 3: Multiple aspects of value + math!
public int hashCode(String input) {

int output = 1;
for (char c : input) {

int nextPrime = getNextPrime();
out += nextPrime + (int)c;

}
return out;

}

CSE 373 SP 18 - KASEY CHAMPION 7

Pro: super fast O(1)
Con: lots of collisions!

Pro: fast O(n)
Con: some collisions

Pro: few collisions
Con: slow, gigantic integers

Practice
Consider a StringDictionary using separate chaining with an internal capacity of 10. Assume our
buckets are implemented using a LinkedList. Use the following hash function:

public int hashCode(String input) {
return input.length() % arr.length;

}

Now, insert the following key-value pairs. What does the dictionary internally look like?

(“a”, 1) (“ab”, 2) (“c”, 3) (“abc”, 4) (“abcd”, 5) (“abcdabcd”, 6) (“five”, 7) (“hello world”, 8)

CSE 373 SP 18 - KASEY CHAMPION 8

0 1 2 3 4 5 6 7 8 9

(“a”, 1) (“abcd”, 5)

(“c”, 3)

(“five”, 7)

(“abc”, 4)(“ab”, 2)

(“hello world”, 8)

(“abcdabcd”, 6)

3 Minutes

Review: Handling Collisions

Solution 1: Chaining
Each space holds a “bucket” that can store multiple values. Bucket is often implemented with a
LinkedList

CSE 373 SP 18 - KASEY CHAMPION 9

Operation Array w/ indices as keys

put(key,value)

best O(1)

average O(1 + λ)

worst O(n)

get(key)

best O(1)

average O(1 + λ)

worst O(n)

remove(key)

best O(1)

average O(1 + λ)

worst O(n)

Average Case:
Depends on average number of
elements per chain

Load Factor λ
If n is the total number of key-
value pairs
Let c be the capacity of array

Load Factor λ =
!
"

Handling Collisions
Solution 2: Open Addressing
Resolves collisions by choosing a different location to tore a value if natural choice is already full.

Type 1: Linear Probing

If there is a collision, keep checking the next element until we find an open spot.
public int hashFunction(String s)

int naturalHash = this.getHash(s);
if(natural hash in use) {

int i = 1;
while (index in use) {

try (naturalHash + i);
i++;

CSE 373 SP 18 - KASEY CHAMPION 10

Linear Probing

0 1 2 3 4 5 6 7 8 9

CSE 373 SP 18 - KASEY CHAMPION 11

Insert the following values into the Hash Table using a hashFunction of % table size and
linear probing to resolve collisions
1, 5, 11, 7, 12, 17, 6, 25

1 511 712 17625

Linear Probing

CSE 373 SP 18 - KASEY CHAMPION 12

0 1 2 3 4 5 6 7 8 9

Insert the following values into the Hash Table using a hashFunction of % table size and
linear probing to resolve collisions
38, 19, 8, 109, 10

38 1988 10910

Problem:
• Linear probing causes clustering
• Clustering causes more looping when probing

Primary Clustering
When probing causes long chains of
occupied slots within a hash table

3 Minutes

Runtime
When is runtime good?
Empty table

When is runtime bad?
Table nearly full
When we hit a “cluster”

Maximum Load Factor?
λ at most 1.0

When do we resize the array?
λ ≈ ½

CSE 373 SP 18 - KASEY CHAMPION 13

2 Minutes

Can we do better?
Clusters are caused by picking new space near natural index

Solution 2: Open Addressing
Type 2: Quadratic Probing

If we collide instead try the next i2 space
public int hashFunction(String s)

int naturalHash = this.getHash(s);
if(natural hash in use) {

int i = 1;
while (index in use) {

try (naturalHash + i);
i++;

CSE 373 SP 18 - KASEY CHAMPION 14

i * i);

Quadratic Probing

CSE 373 SP 18 - KASEY CHAMPION 15

0 1 2 3 4 5 6 7 8 9

(49 % 10 + 0 * 0) % 10 = 9

(49 % 10 + 1 * 1) % 10 = 0

(58 % 10 + 0 * 0) % 10 = 8

(58 % 10 + 1 * 1) % 10 = 9

(58 % 10 + 2 * 2) % 10 = 2

8918 49

Insert the following values into the Hash Table using a hashFunction of % table size and

quadratic probing to resolve collisions

89, 18, 49, 58, 79

58 79

(79 % 10 + 0 * 0) % 10 = 9

(79 % 10 + 1 * 1) % 10 = 0

(79 % 10 + 2 * 2) % 10 = 3

Problems:
If λ≥ ½ we might never find an empty spot

Infinite loop!

Can still get clusters

Secondary Clustering

CSE 373 SP 18 - KASEY CHAMPION 16

0 1 2 3 4 5 6 7 8 9

Insert the following values into the Hash Table using a hashFunction of % table size and
quadratic probing to resolve collisions
19, 39, 29, 9

39 29 199

Secondary Clustering
When using quadratic probing sometimes need
to probe the same sequence of table cells, not
necessarily next to one another

3 Minutes

Probing
- h(k) = the natural hash
- h’(k, i) = resulting hash after probing
- i = iteration of the probe
- T = table size

Linear Probing:
h’(k, i) = (h(k) + i) % T

Quadratic Probing
h’(k, i) = (h(k) + i2) % T

For both types there are only O(T) probes available
- Can we do better?

CSE 373 SP 18 - KASEY CHAMPION 17

Double Hashing
Probing causes us to check the same indices over and over- can we check different ones instead?

Use a second hash function!

h’(k, i) = (h(k) + i * g(k)) % T

public int hashFunction(String s)
int naturalHash = this.getHash(s);
if(natural hash in use) {

int i = 1;
while (index in use) {

try (naturalHash + i * jump_Hash(key));
i++;

CSE 373 SP 18 - KASEY CHAMPION 18

<- Most effective if g(k) returns value prime to table size

Second Hash Function
Effective if g(k) returns a value that is relatively prime to table size
- If T is a power of 2, make g(k) return an odd integer
- If T is a prime, make g(k) return any smaller, non-zero integer

- g(k) = 1 + (k % T(-1))

How many different probes are there?
- T different starting positions
- T – 1 jump intervals
- O(T2) different probe sequences

- Linear and quadratic only offer O(T) sequences

CSE 373 SP 18 - KASEY CHAMPION 19

Resizing
How do we resize?
- Remake the table
- Evaluate the hash function over again.
- Re-insert.

When to resize?
- Depending on our load factor !
-Heuristic:

- for separate chaining ! between 1 and 3 is a good time to resize.
- For open addressing ! between 0.5 and 1 is a good time to resize.

What are the running times for:
insert

Best: !(1)
Worst: !(%) (if insertions are always at the end of the linked list)

find
Best: !(1)
Worst: !(%)

delete
Best: !(1)
Worst: !(%)

Separate chaining: Running Times

CSE 332 SU 18 – ROBBIE WEBER

Linear probing: Average-case insert
If ! < 1 we’ll find a spot eventually.
What’s the average running time?

If find is unsuccessful: $% 1 + $
$'()

If find is successful: $% 1 + $
($'()

We won’t ask you to prove these

for any pair of elements x, y
the probability that h(x) = h(y) is $

,-./01230

Uniform Hashing Assumption

CSE 332 SU 18 – ROBBIE WEBER

Summary
1. Pick a hash function to:
- Avoid collisions
- Uniformly distribute data
- Reduce hash computational costs

2. Pick a collision strategy
- Chaining

- LinkedList
- AVL Tree

- Probing
- Linear
- Quadratic

- Double Hashing

CSE 373 SP 18 - KASEY CHAMPION 23

No clustering
Potentially more “compact” (λ can be higher)

Managing clustering can be tricky
Less compact (keep λ < ½)
Array lookups tend to be a constant factor faster than traversing pointers

Summary

Separate Chaining
- Easy to implement
- Running times !(1 + %)
Open Addressing
- Uses less memory.
- Various schemes:
- Linear Probing – easiest, but need to resize most frequently
- Quadratic Probing – middle ground
- Double Hashing – need a whole new hash function, but low chance of clustering.

Which you use depends on your application and what you’re worried about.

- Cryptographic hash functions: Hash functions with some additional properties
- Commonly used in practice: SHA-1, SHA-265
- To verify file integrity. When you share a large file with someone, how do you know that the other person got the exact same

file? Just compare hash of the file on both ends. Used by file sharing services (Google Drive, Dropbox)
- For password verification: Storing passwords in plaintext is insecure. So your passwords are stored as a hash.
- For Digital signature
- Lots of other crypto applications

- Finding similar records: Records with similar but not identical keys
- Spelling suggestion/corrector applications
- Audio/video fingerprinting
- Clustering

- Finding similar substrings in a large collection of strings
- Genomic databases
- Detecting plagiarism

- Geometric hashing: Widely used in computer graphics and computational geometry

Other applications of hashing

CSE 373 AU 18 – SHRI MARE 25

Wrap Up

Hash Tables:
- Efficient find, insert, delete on average, under some assumptions
- Items not in sorted order
- Tons of real world uses
- …and really popular in tech interview questions.

Need to pick a good hash function.
- Have someone else do this if possible.
- Balance getting a good distribution and speed of calculation.

Resizing:
- Always make the table size a prime number.
-! determines when to resize, but depends on collision resolution strategy.

CSE 373 SP 18 - KASEY CHAMPION 27

