
Lecture 10: BST and AVL 
Trees

CSE 373: Data Structures and 
Algorithms

CSE 373 19 SP - KASEY CHAMPION 1



Warm Up

CSE 373 19 SP - KASEY CHAMPION 2

8

6 11

157

9 9 > 8

6

2 8

1 7 124

10 13

Is valid BST?
Height?

Is valid BST?
Height?

No

Yes

2

3



Administrivia

CSE 373 19 SP - KASEY CHAMPION 3



Trees

CSE 373 SP 18 - KASEY CHAMPION 4



Binary Search Trees
A binary search tree is a binary tree that contains comparable items such that for every node, all 
children to the left contain smaller data and all children to the right contain larger data.

CSE 373 SP 18 - KASEY CHAMPION 5

10

9 15

7 12 18

8 17



Implement Dictionary
Binary Search Trees allow us to:
- quickly find what we’re looking for
- add and remove values easily

Dictionary Operations:
Runtime in terms of height, “h”
get() – O(h)
put() – O(h)
remove() – O(h)

What do you replace the node with?
Largest in left sub tree or smallest in right sub tree

CSE 373 SP 18 - KASEY CHAMPION 6

10

“foo”

7

“bar”

12

“baz”

9

“sho”

5

“fo”

15

“sup”

13

“boo”

8

“poo”

1

“burp”



Height in terms of Nodes
For “balanced” trees h ≈ logc(n) where c is the maximum number of children

Balanced binary trees h ≈ log2(n)

Balanced trinary tree h ≈ log3(n)

Thus for balanced trees operations take Θ(logc(n))

CSE 373 SP 18 - KASEY CHAMPION 7



Unbalanced Trees
Is this a valid Binary Search Tree?

Yes, but…

We call this a degenerate tree
For trees, depending on how balanced they are,

Operations at worst can be O(n) and at best

can be O(logn)

How are degenerate trees formed?
- insert(10)
- insert(9)
- insert(7)
- insert(5)

CSE 373 SP 18 - KASEY CHAMPION 8

10

9

7

5



Implementing Dictionary with BST
public boolean contains(K key, BSTNode node) {

if (node == null) {

return false;

}

int compareResult = compareTo(key, node.data);

if (compareResult < 0) {

returns contains(key, node.left);

} else if (compareResult > 0) {

returns contains(key, node.right);

} else {

returns true;

} 

}

CSE 373 SP 18 - KASEY CHAMPION 9

+C1

+C3

+C2
+T(n/2) best
+ T(n-1) worst
+T(n/2) best
+ T(n-1) worst ! " = $

% &'(" " < * +, -(. /+0"1
! "
2 + % +4'(,&56(

! " = 7% &'(" " < * +, -(. /+0"1
! " − 9 + % +4'(,&56(

Best Case (assuming key is at the bottom)

Worst Case (assuming key is at the bottom)

2 Minutes



Measuring Balance
Measuring balance:

For each node, compare the heights of its two sub trees

Balanced when the difference in height between sub trees is no greater than 1

CSE 373 SP 18 - KASEY CHAMPION 10

10

15

12 18

8

7

78

7 9

Balanced

Unbalanced

Balanced

Balanced

2 Minutes



Meet AVL Trees
AVL Trees must satisfy the following properties: 
- binary trees: all nodes must have between 0 and 2 children
- binary search tree: for all nodes, all keys in the left subtree must be smaller and all keys in the right subtree must be 

larger than the root node
- balanced: for all nodes, there can be no more than a difference of 1 in the height of the left subtree from the right. 

Math.abs(height(left subtree) – height(right subtree)) ≤ 1

AVL stands for Adelson-Velsky and Landis (the inventors of the data structure)

CSE 373 SP 18 - KASEY CHAMPION 11



Is this a valid AVL tree?

CSE 373 SP 18 - KASEY CHAMPION 12

7

4 10

3 9 125

8 11 13

14

2 6

Is it…
- Binary
- BST
- Balanced?

yes
yes
yes



Is this a valid AVL tree?

CSE 373 SP 18 - KASEY CHAMPION 13

6

2 8

1 7 124

9

10 13

11

3 5

Is it…
- Binary
- BST
- Balanced?

yes
yes
no

Height = 2Height = 0

2 Minutes



Is this a valid AVL tree?

CSE 373 SP 18 - KASEY CHAMPION 14

8

6 11

2 157

-1 9

Is it…
- Binary
- BST
- Balanced?

yes
no
yes

9 > 85

2 Minutes



Implementing an AVL tree dictionary
Dictionary Operations:

get() – same as BST

containsKey() – same as BST

put() - ???

remove() - ???

CSE 373 SP 18 - KASEY CHAMPION 15

Add the node to keep BST, fix AVL property if necessary

Replace the node to keep BST, fix AVL property if necessary

1

2

3

Unbalanced!

2

1 3



Rotations!

CSE 373 SP 18 - KASEY CHAMPION 16

a

b

X

c

Y Z

a

b

X

Y Z c

a

b

X Y

Z

Insert ‘c’

Balanced!Unbalanced!



Rotate Left

CSE 373 SP 18 - KASEY CHAMPION 17

a

b

X

c

Y Z

a

b

X

Y Z c

a

b

X Y

Z

Insert ‘c’

Unbalanced!
Balanced!

parent’s right becomes child’s left, child’s left becomes its parent



Rotate Right

CSE 373 SP 18 - KASEY CHAMPION 18

15

8 22

4 2410

3

19

6 2017

put(16);

16

0 0

1 0

2

0 0

01

2

3 height

0

1

2

3

4

Unbalanced!

parent’s left becomes child’s right, child’s right becomes its parent



CSE 373 SP 18 - KASEY CHAMPION 19

15

8

224

24

10

3

19

6 20

17

put(16);

16
0 0

1 0

2

3

1

0 0 0

1

2

height

Rotate Right
parent’s left becomes child’s right, child’s right becomes its parent



So much can go wrong

CSE 373 SP 18 - KASEY CHAMPION 20

1

3

2

Unbalanced!
3

1

2

Rotate Left

Unbalanced!

Rotate Right

1

3

2

Unbalanced!

Parent’s left becomes child’s right
Child’s right becomes its parent

Parent’s right becomes child’s left
Child’s left becomes its parent



Two AVL Cases

CSE 373 SP 18 - KASEY CHAMPION 21

1

3

2

1

2

3

Line Case
Solve with 1 rotation

Kink Case
Solve with 2 rotations

3

2

1

Rotate Right
Parent’s left becomes child’s right
Child’s right becomes its parent

Rotate Left
Parent’s right becomes child’s left
Child’s left becomes its parent

3

1

2

Right Kink Resolution
Rotate subtree left
Rotate root tree right

Left Kink Resolution
Rotate subtree right
Rotate root tree left



Double Rotations 1

CSE 373 SP 18 - KASEY CHAMPION 22

a

e

W
d

Y

Z

a

e

X

X

Z

Insert ‘c’

Unbalanced!

d

X

Y

c

a

d

W

Y

ZX

e

c



Double Rotations 2

CSE 373 SP 18 - KASEY CHAMPION 23

a

d

W

Y

ZX

e

c

Unbalanced!

a

d

W Y ZX

e

c



Implementing Dictionary with AVL
public boolean contains(K key, AVLNode node) {

if (node == null) {

return false;

}

int compareResult = compareTo(key, node.data);

if (compareResult < 0) {

returns contains(key, node.left);

} else if (compareResult > 0) {

returns contains(key, node.right);

} else {

returns true;

} 

}

CSE 373 SP 18 - KASEY CHAMPION 24

+C1

+C3

+C2

+T(n/2)

+T(n/2)

! " = $
% &'(" " < * +, -(. /+0"1

! "
2 + % +4'(,&56(

Worst Case Improvement Guaranteed with AVL 

2 Minutes



How long does AVL insert take?

AVL insert time = BST insert time + time it takes to rebalance the tree

= O(log n) + time it takes to rebalance the tree

How long does rebalancing take?
- Assume we store in each node the height of its subtree.
- How long to find an unbalanced node:

- Just go back up the tree from where we inserted. 

- How many rotations might we have to do?
- Just a single or double rotation on the lowest unbalanced node. 

AVL insert time = O(log n)+ O(log n) + O(1) = O(log n)

ß O(log n)

ß O(1)

CSE 373 AU 18 – SHRI MARE



Pros:

- O(log	n) worst case for find, insert, and delete operations.

- Reliable  running times than regular BSTs (because trees are balanced)

Cons:

- Difficult to program & debug [but done once in a library!]

- (Slightly) more space than BSTs to store node heights.

AVL wrap up

CSE 373 AU 18 – SHRI MARE 26



Lots of cool Self-Balancing BSTs out there!

Popular self-balancing BSTs include:

AVL tree

Splay tree

2-3 tree

AA tree

Red-black tree

Scapegoat tree

Treap

(From https://en.wikipedia.org/wiki/Self-balancing_binary_search_tree#Implementations)

(Not covered in this class, but several are in the 
textbook and all of them are online!)

CSE 373 SU 17 – LILIAN DE GREEF

https://en.wikipedia.org/wiki/AVL_tree
https://en.wikipedia.org/wiki/Splay_tree
https://en.wikipedia.org/wiki/2-3_tree
https://en.wikipedia.org/wiki/AA_tree
https://en.wikipedia.org/wiki/Red-black_tree
https://en.wikipedia.org/wiki/Scapegoat_tree
https://en.wikipedia.org/wiki/Treap
https://en.wikipedia.org/wiki/Self-balancing_binary_search_tree

