
Lecture 10: BST and AVL 
Trees

CSE 373: Data Structures and 
Algorithms
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Warm Up
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Administrivia
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Trees
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Binary Search Trees
A binary search tree is a binary tree that contains comparable items such that for every node, all 
children to the left contain smaller data and all children to the right contain larger data.
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Implement Dictionary
Binary Search Trees allow us to:
- quickly find what we’re looking for
- add and remove values easily

Dictionary Operations:
Runtime in terms of height, “h”
get() – O(h)
put() – O(h)
remove() – O(h)

What do you replace the node with?
Largest in left sub tree or smallest in right sub tree
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Height in terms of Nodes
For “balanced” trees h ≈ logc(n) where c is the maximum number of children

Balanced binary trees h ≈ log2(n)

Balanced trinary tree h ≈ log3(n)

Thus for balanced trees operations take Θ(logc(n))
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Unbalanced Trees
Is this a valid Binary Search Tree?

Yes, but…

We call this a degenerate tree
For trees, depending on how balanced they are,

Operations at worst can be O(n) and at best

can be O(logn)

How are degenerate trees formed?
- insert(10)
- insert(9)
- insert(7)
- insert(5)
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Implementing Dictionary with BST
public boolean contains(K key, BSTNode node) {

if (node == null) {

return false;

}

int compareResult = compareTo(key, node.data);

if (compareResult < 0) {

returns contains(key, node.left);

} else if (compareResult > 0) {

returns contains(key, node.right);

} else {

returns true;

} 

}
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Measuring Balance
Measuring balance:

For each node, compare the heights of its two sub trees

Balanced when the difference in height between sub trees is no greater than 1
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Meet AVL Trees
AVL Trees must satisfy the following properties: 
- binary trees: all nodes must have between 0 and 2 children
- binary search tree: for all nodes, all keys in the left subtree must be smaller and all keys in the right subtree must be 

larger than the root node
- balanced: for all nodes, there can be no more than a difference of 1 in the height of the left subtree from the right. 

Math.abs(height(left subtree) – height(right subtree)) ≤ 1

AVL stands for Adelson-Velsky and Landis (the inventors of the data structure)
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Is this a valid AVL tree?
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Is this a valid AVL tree?
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Is this a valid AVL tree?
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Implementing an AVL tree dictionary
Dictionary Operations:

get() – same as BST

containsKey() – same as BST

put() - ???

remove() - ???
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Rotations!
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Rotate Left
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Rotate Right
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So much can go wrong
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Two AVL Cases
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Double Rotations 1
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Double Rotations 2
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Implementing Dictionary with AVL
public boolean contains(K key, AVLNode node) {

if (node == null) {

return false;

}

int compareResult = compareTo(key, node.data);

if (compareResult < 0) {

returns contains(key, node.left);

} else if (compareResult > 0) {

returns contains(key, node.right);

} else {

returns true;

} 

}
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How long does AVL insert take?

AVL insert time = BST insert time + time it takes to rebalance the tree

= O(log n) + time it takes to rebalance the tree

How long does rebalancing take?
- Assume we store in each node the height of its subtree.
- How long to find an unbalanced node:

- Just go back up the tree from where we inserted. 

- How many rotations might we have to do?
- Just a single or double rotation on the lowest unbalanced node. 

AVL insert time = O(log n)+ O(log n) + O(1) = O(log n)

ß O(log n)

ß O(1)
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Pros:

- O(log	n) worst case for find, insert, and delete operations.

- Reliable  running times than regular BSTs (because trees are balanced)

Cons:

- Difficult to program & debug [but done once in a library!]

- (Slightly) more space than BSTs to store node heights.

AVL wrap up
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Lots of cool Self-Balancing BSTs out there!

Popular self-balancing BSTs include:

AVL tree

Splay tree

2-3 tree

AA tree

Red-black tree

Scapegoat tree

Treap

(From https://en.wikipedia.org/wiki/Self-balancing_binary_search_tree#Implementations)

(Not covered in this class, but several are in the 
textbook and all of them are online!)
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