
Lecture 9: Intro to Trees CSE 373: Data Structures and 
Algorithms
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Warm Up
1. Write a recurrence for this piece of code (assume each node has exactly  or 2 children)

private IntTreeNode doublePositivesHelper(IntTreeNode node) {

if (node != null) {

if (node.data > 0) {

node.data *= 2;

}

node.left = doublePositivesHelper(node.left);

node.right = doublePositivesHelper(node.right);

return node;

} else {

return null;

}

}
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Extra Credit:
Go to PollEv.com/champk
Text CHAMPK to 22333 to join 
session, text “1” or “2” to select your 
answer
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Warm Up Continued
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Warm Up Continued
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1. How many nodes on each branch level?

2. How much work for each branch node?

3. How much work per branch level?

4. How many branch levels?

5. How much work for each leaf node?

6. How many leaf nodes?
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Trees
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Storing Sorted Items in an Array
get() – O(logn)

put() – O(n)

remove() – O(n)

Can we do better with insertions and removals?
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Review: Trees!
A tree is a collection of nodes
- Each node has at most 1 parent and 0 or more children

Root node: the single node with no parent, “top” of 
the tree

Branch node: a node with one or more children

Leaf node: a node with no children

Edge: a pointer from one node to another

Subtree: a node and all it descendants

Height: the number of edges contained in the longest 
path from root node to some leaf node 
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Tree Height
What is the height of the following trees?
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1

2 5

7

7

overallRoot overallRoot overallRoot

null

Height = 2 Height = 0 Height = -1 or NA

2 Minutes



Traversals
traversal: An examination of the elements of a tree.
– A pattern used in many tree algorithms and methods

Common orderings for traversals:
– pre-order: process root node, then its left/right subtrees
– 17 41 29 6 9 81 40
– in-order: process left subtree, then root node, then right
– 29 41 6 17 81 9 40
– post-order: process left/right subtrees, then root node
– 29 6 41 81 40 9 17

Traversal Trick: Sailboat method
– Trace a path around the tree.
– As you pass a node on the

proper side, process it.
• pre-order: left side
• in-order: bottom
• post-order: right side
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Binary Search Trees
A binary search tree is a binary tree that contains comparable items such that for every node, all 
children to the left contain smaller data and all children to the right contain larger data.
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Implement Dictionary
Binary Search Trees allow us to:
- quickly find what we’re looking for
- add and remove values easily

Dictionary Operations:
Runtime in terms of height, “h”
get() – O(h)
put() – O(h)
remove() – O(h)

What do you replace the node with?
Largest in left sub tree or smallest in right sub tree
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“foo”

7

“bar”
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“baz”
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“sho”
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“fo”

15

“sup”
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Height in terms of Nodes
For “balanced” trees h ≈ logc(n) where c is the maximum number of children

Balanced binary trees h ≈ log2(n)

Balanced trinary tree h ≈ log3(n)

Thus for balanced trees operations take Θ(logc(n))
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Unbalanced Trees
Is this a valid Binary Search Tree?

Yes, but…

We call this a degenerate tree
For trees, depending on how balanced they are,

Operations at worst can be O(n) and at best

can be O(logn)

How are degenerate trees formed?
- insert(10)
- insert(9)
- insert(7)
- insert(5)

CSE 373 SP 18 - KASEY CHAMPION 13

10

9

7

5



Measuring Balance
Measuring balance:

For each node, compare the heights of its two sub trees

Balanced when the difference in height between sub trees is no greater than 1
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2 Minutes



Meet AVL Trees
AVL Trees must satisfy the following properties: 
- binary trees: all nodes must have between 0 and 2 children
- binary search tree: for all nodes, all keys in the left subtree must be smaller and all keys in the right subtree must be 

larger than the root node
- balanced: for all nodes, there can be no more than a difference of 1 in the height of the left subtree from the right. 

Math.abs(height(left subtree) – height(right subtree)) ≤ 1

AVL stands for Adelson-Velsky and Landis (the inventors of the data structure)
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Is this a valid AVL tree?
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Is it…
- Binary
- BST
- Balanced?

yes
yes
yes



Is this a valid AVL tree?
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Is it…
- Binary
- BST
- Balanced?

yes
yes
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Height = 2Height = 0

2 Minutes



Is this a valid AVL tree?
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8

6 11

2 157

-1 9

Is it…
- Binary
- BST
- Balanced?

yes
no
yes

9 > 85

2 Minutes



Implementing an AVL tree dictionary
Dictionary Operations:

get() – same as BST

containsKey() – same as BST

put() - ???

remove() - ???
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Add the node to keep BST, fix AVL property if necessary

Replace the node to keep BST, fix AVL property if necessary
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Warm Up
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Meet AVL Trees
AVL Trees must satisfy the following properties: 
- binary trees: all nodes must have between 0 and 2 children
- binary search tree: for all nodes, all keys in the left subtree must be smaller and all keys in the right subtree must be 

larger than the root node
- balanced: for all nodes, there can be no more than a difference of 1 in the height of the left subtree from the right. 

Math.abs(height(left subtree) – height(right subtree)) ≤ 1

AVL stands for Adelson-Velsky and Landis (the inventors of the data structure)
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Measuring Balance
Measuring balance:

For each node, compare the heights of its two sub trees

Balanced when the difference in height between sub trees is no greater than 1
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Is this a valid AVL tree?
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Is this a valid AVL tree?
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Is this a valid AVL tree?
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Is it…
- Binary
- BST
- Balanced?

yes
no
yes

9 > 85

2 Minutes



Implementing an AVL tree dictionary
Dictionary Operations:

get() – same as BST

containsKey() – same as BST

put() - ???

remove() - ???
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Add the node to keep BST, fix AVL property if necessary

Replace the node to keep BST, fix AVL property if necessary
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Rotations!
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Rotate Left
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Unbalanced!
Balanced!

parent’s right becomes child’s left, child’s left becomes its parent



Rotate Right
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put(16);
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Unbalanced!

parent’s left becomes child’s right, child’s right becomes its parent
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Rotate Right
parent’s left becomes child’s right, child’s right becomes its parent



So much can go wrong
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Unbalanced!
3

1
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Rotate Left

Unbalanced!

Rotate Right

1

3

2

Unbalanced!

Parent’s left becomes child’s right
Child’s right becomes its parent

Parent’s right becomes child’s left
Child’s left becomes its parent



Two AVL Cases
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1

3

2

1

2

3

Line Case
Solve with 1 rotation

Kink Case
Solve with 2 rotations

3

2

1

Rotate Right
Parent’s left becomes child’s right
Child’s right becomes its parent

Rotate Left
Parent’s right becomes child’s left
Child’s left becomes its parent

3

1

2

Right Kink Resolution
Rotate subtree left
Rotate root tree right

Left Kink Resolution
Rotate subtree right
Rotate root tree left



Double Rotations 1
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Double Rotations 2
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