
Lecture 8: Tree Method CSE 373: Data Structures and
Algorithms

CSE 373 19 SP - KASEY CHAMPION 1

Warm Up – Writing Recurrence
Write a recurrence for the following piece of code:

public void mystery2(int n) {

if (n > 100) {

System.out.print(n);

} else {

mystery2(2 * n);

System.out.print(", " + n);

}

}

CSE 373 SP 19 - KASEY CHAMPION 2

Extra Credit:
Go to PollEv.com/champk
Text CHAMPK to 22333 to join
session, text “1” or “2” to select your
answer

+1

+1

+1

C when n >100

C + T(2n) when n <100

! " = $%& '()" " > &++
! ," + %, ./()0'12)

Solving Recurrences
How do we go from code model to Big O?

1. Explore the recursive pattern

2. Write a new model in terms of “i”

3. Use algebra simplify the T away

4. Use algebra to find the “closed form”

Three Methods:

1. Tree Method – draw out the branching nature of recursion to find pattern

2. Unrolling – plug function into itself to find pattern

3. Master Theorem – plug and chug!

CSE 373 SP 19 - KASEY CHAMPION 3

Tree Method

CSE 373 SP 19 - KASEY CHAMPION 4

! "! "
2 + ! "

2 + "

! "
2 ! "

2

"
1. Draw an overall root representing the start of your family of recursive calls
2. How many inputs are handled by the top recursive level?
3. How many of those inputs are passed downstream to the next recursive calls?
4. …
5. What does the last row of the tree look like?
6. Sum up all the work!

! "
4 + ! "

4 + "2 ! "
4 + ! "

4 + "2
"
2

"
2

! "
4 ! "

4 ! "
4 ! "

4
"
4

"
4

"
4

"
4

… … … … … … … …

Draw out call stack, how much work does each call do?

! " = '
1)ℎ+" " ≤ 1

2! "
2 + " -.ℎ+/)01+

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Tree Method

5

n

n
2

n
2

n
4

n
4

n
4

n
4

n
8

n
8

n
8

n
8

n
8

n
8

n
8

n
8

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

… … … … … … … …… … …… … … … …

How many pieces of
work at each level?

How many inputs are
processed across this

level of recursion?
1 n

2

4

8

n

n

n

n

n

& ' =
1)ℎ+' ' ≤ 1
2& '

2 + ' ./ℎ+0)12+
How many inputs are
passed into each call?

n

3
4

3
44

3
45

6

Tree Method Formulas
How much work is done by recursive levels (branch nodes)?
1. How many recursive calls are on the i-th level of the tree?

- i = 0 is overall root level

2. At each level i, how many inputs does a single node process?
3. How many recursive levels are there?

- Based on the pattern of how we get down to base case

How much work is done by the base case level (leaf nodes)?
1. How much work is done by a single leaf node?
2. How many leaf nodes are there?

CSE 373 SP 18 - KASEY CHAMPION 6

!"#$%&'(")*%+ = -
./0

123456278.95:595;8

<$=>"%?*@"&A"%B"("C ' >%D<#ℎF*%+(')

>D&" #D&")*%+ = C"DIF*%+×C"DIK*$<L = C"DIF*%+×<$=>"%?*@"&A"%B"("C123456278.95:595;8MN

O < =
1)ℎ"< < ≤ 1

2O
<
2 + < *Lℎ"%)'&"

numberNodesPerLevel(i) = 2i

inputsPerRecursiveCall(i) = (n/ 2i)
numRecursiveLevels = log2n - 1

O(< > 1) = -
./0

UVWX 1YN

2.
<
2.

leafWork = 1
leafCount = 2log2n = n

O < ≤ 1 = 1 2;Z[\1 = <

O < = -
./0

UVWX 1YN

2.
<
2. + < = < log\ < + <L*LDC)*%+ = %"#$%&'(")*%+ + >D&" #D&")*%+ =

Tree Method Practice

7

! " =
4 %ℎ'" " ≤ 1
3! "

4 + ,"- ./ℎ'0%12'

,n-

, n
4

-

… …

, n
4

-
, n
4

-

, n
16

-
, n
16

-
, n
16

-
, n
16

-
, n
16

-
, n
16

-
, n
16

-
, n
16

-
, n
16

-

… … …… … …… … …… … …… … …… … …… … …… … ……

4 4

Answer the following
questions:
1. How many nodes on

each branch level?
2. How much work for

each branch node?
3. How much work per

branch level?
4. How many branch

levels?
5. How much work for

each leaf node?
6. How many leaf

nodes?

EXAMPLE PROVIDED BY CS 161 – JESSICA SU
HTTPS://WEB.STANFORD.EDU/CLASS/ARCHIVE/CS/CS161/CS161.1168/LECTURE3.PDF

! "
4 ! "

4 ! "
4

! "
4 + ! "

4 + ! "
4 + ,"-

https://web.stanford.edu/class/archive/cs/cs161/cs161.1168/lecture3.pdf

Tree Method Practice

CSE 373 SP 18 - KASEY CHAMPION 8

Level (i) Number of
Nodes

Work per
Node

Work per
Level

0 1 !"2 !"2

1 3 !
"

4

% 3
16
!"%

2 9 !
"
16

% 9
256

!"%

base 3+,-./ 4 12+,-./

1. How many nodes on each branch level?

2. How much work for each branch node?

3. How much work per branch level?

4. How many branch levels?

5. How much work for each leaf node?

6. How many leaf nodes?

30

!
"

40
%

log. " − 1

4

5 " =
4 7ℎ9" " ≤ 1

35
"

4
+ !"% <=ℎ9>7?@9

Combining it all together…

30!
"

40
%
=

3

16

0

!"%

5 " = A
0BC

+,-D / EF
3

16

0

!"% + 4"+,-.G

3+,-D / power of a log

H+,-I J = K+,-I L
"+,-D G

5 Minutes

Tree Method Practice

CSE 373 SP 18 - KASEY CHAMPION 9

! " = $
%&'

()*+ , -. 3
16

%
2"3 + 4"()*67

! " = 2"3 1
1 − 3

16
+ 4"()*67

! " = 2"3
3
16

()*+ ,
− 1

3
16 − 1

+ 4"()*67

! " ∈ :("3)

$
%&=

>
2?(@) = 2$

%&=

>
?(@)

factoring out a constant

! " = 2"3 $
%&'

()*+ , -. 3
16

%
+ 4"()*67

$
%&'

,-.
A% = A, − 1

A − 1

finite geometric series

$
%&'

B
A% = 1

1 − A

infinite geometric series

when -1 < x < 1

If we’re trying to prove upper bound…

! " = 2"3$
%&'

B 3
16

%
+ 4"()*67

Closed form:

Reflecting on Master Theorem
The case
- Recursive case conquers work more quickly than it divides work
- Most work happens near “top” of tree
- Non recursive work in recursive case dominates growth, nc term

The case
- Work is equally distributed across call stack (throughout the “tree”)
- Overall work is approximately work at top level x height

The case
- Recursive case divides work faster than it conquers work
- Most work happens near “bottom” of tree
- Leaf work dominates branch work

CSE 373 SP 18 - KASEY CHAMPION 10

! " =
$ %ℎ'" " = 1

)! "
* + ", -.ℎ'/%01'

log5) = 6 ! " ∈ Θ ", log9 "
log5) > 6 ! " ∈ Θ ";<=> ?

If

If

! " ∈ Θ ",log5) < 6If then

then

then

Given a recurrence of the form: log5) < 6

log5) = 6

log5) > 6

A')BC-/D ≈ $ ";<=> ?

ℎ'0Fℎ. ≈ log5)
*/)"6ℎC-/D ≈ ",log5)

Trees

CSE 373 SP 18 - KASEY CHAMPION 15

Storing Sorted Items in an Array
get() – O(logn)

put() – O(n)

remove() – O(n)

Can we do better with insertions and removals?

CSE 373 SP 18 - KASEY CHAMPION 16

Review: Trees!
A tree is a collection of nodes
- Each node has at most 1 parent and 0 or more children

Root node: the single node with no parent, “top” of
the tree

Branch node: a node with one or more children

Leaf node: a node with no children

Edge: a pointer from one node to another

Subtree: a node and all it descendants

Height: the number of edges contained in the longest
path from root node to some leaf node

CSE 373 SP 18 - KASEY CHAMPION 17

1

2 5

3 6 7

4 8

Tree Height
What is the height of the following trees?

CSE 373 SP 18 - KASEY CHAMPION 18

1

2 5

7

7

overallRoot overallRoot overallRoot

null

Height = 2 Height = 0 Height = -1 or NA

2 Minutes

Traversals
traversal: An examination of the elements of a tree.
– A pattern used in many tree algorithms and methods

Common orderings for traversals:
– pre-order: process root node, then its left/right subtrees
– 17 41 29 6 9 81 40
– in-order: process left subtree, then root node, then right
– 29 41 6 17 81 9 40
– post-order: process left/right subtrees, then root node
– 29 6 41 81 40 9 17

Traversal Trick: Sailboat method
– Trace a path around the tree.
– As you pass a node on the

proper side, process it.
• pre-order: left side
• in-order: bottom
• post-order: right side

CSE 373 SP 17 – ZORA FUNG 19

4081

941

17

629

overallRoot

Binary Search Trees
A binary search tree is a binary tree that contains comparable items such that for every node, all
children to the left contain smaller data and all children to the right contain larger data.

CSE 373 SP 18 - KASEY CHAMPION 20

10

9 15

7 12 18

8 17

Implement Dictionary
Binary Search Trees allow us to:
- quickly find what we’re looking for
- add and remove values easily

Dictionary Operations:
Runtime in terms of height, “h”
get() – O(h)
put() – O(h)
remove() – O(h)

What do you replace the node with?
Largest in left sub tree or smallest in right sub tree

CSE 373 SP 18 - KASEY CHAMPION 21

10

“foo”

7

“bar”

12

“baz”

9

“sho”

5

“fo”

15

“sup”

13

“boo”

8

“poo”

1

“burp”

Height in terms of Nodes
For “balanced” trees h ≈ logc(n) where c is the maximum number of children

Balanced binary trees h ≈ log2(n)

Balanced trinary tree h ≈ log3(n)

Thus for balanced trees operations take Θ(logc(n))

CSE 373 SP 18 - KASEY CHAMPION 22

Unbalanced Trees
Is this a valid Binary Search Tree?

Yes, but…

We call this a degenerate tree
For trees, depending on how balanced they are,

Operations at worst can be O(n) and at best

can be O(logn)

How are degenerate trees formed?
- insert(10)
- insert(9)
- insert(7)
- insert(5)

CSE 373 SP 18 - KASEY CHAMPION 23

10

9

7

5

Measuring Balance
Measuring balance:

For each node, compare the heights of its two sub trees

Balanced when the difference in height between sub trees is no greater than 1

CSE 373 SP 18 - KASEY CHAMPION 24

10

15

12 18

8

7

78

7 9

Balanced

Unbalanced

Balanced

Balanced

2 Minutes

Meet AVL Trees
AVL Trees must satisfy the following properties:
- binary trees: all nodes must have between 0 and 2 children
- binary search tree: for all nodes, all keys in the left subtree must be smaller and all keys in the right subtree must be

larger than the root node
- balanced: for all nodes, there can be no more than a difference of 1 in the height of the left subtree from the right.

Math.abs(height(left subtree) – height(right subtree)) ≤ 1

AVL stands for Adelson-Velsky and Landis (the inventors of the data structure)

CSE 373 SP 18 - KASEY CHAMPION 25

Is this a valid AVL tree?

CSE 373 SP 18 - KASEY CHAMPION 26

7

4 10

3 9 125

8 11 13

14

2 6

Is it…
- Binary
- BST
- Balanced?

yes
yes
yes

Is this a valid AVL tree?

CSE 373 SP 18 - KASEY CHAMPION 27

6

2 8

1 7 124

9

10 13

11

3 5

Is it…
- Binary
- BST
- Balanced?

yes
yes
no

Height = 2Height = 0

2 Minutes

Is this a valid AVL tree?

CSE 373 SP 18 - KASEY CHAMPION 28

8

6 11

2 157

-1 9

Is it…
- Binary
- BST
- Balanced?

yes
no
yes

9 > 85

2 Minutes

Implementing an AVL tree dictionary
Dictionary Operations:

get() – same as BST

containsKey() – same as BST

put() - ???

remove() - ???

CSE 373 SP 18 - KASEY CHAMPION 29

Add the node to keep BST, fix AVL property if necessary

Replace the node to keep BST, fix AVL property if necessary

1

2

3

Unbalanced!

2

1 3

CSE 373 SP 18 - KASEY CHAMPION 30

