
Lecture 7: Solving 
Recurrences

CSE 373: Data Structures and 
Algorithms
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Thought Experiment

Discuss with your neighbors: Imagine you are writing an implementation of the List interface that stores 
integers in an Array. What are some ways you can assess your program’s correctness in the following 
cases:

Expected Behavior
- Create a new list
- Add some amount of items to it
- Remove a couple of them

Forbidden Input
- Add a negative number
- Add duplicates
- Add extra large numbers

Empty/Null
- Call remove on an empty list
- Add to a null list
- Call size on an null list
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Boundary/Edge Cases
- Add 1 item to an empty list

- Set an item at the front of the list

- Set an item at the back of the list

Scale
- Add 1000 items to the list

- Remove 100 items in a row

- Set the value of the same item 50 times

5 Minutes

Extra Credit:
Go to PollEv.com/champk
Text CHAMPK to 22333 to join 
session, text “1” or “2” to select your 
answer



Administriva

3CSE 373 19 WI - KASEY CHAMPION



Solving Recurrences
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Modeling Recursion

public int factorial(int n) {

if (n == 0 || n == 1) {

return 1;

} else {
return n * factorial(n-1);     

}

}

5

Write a mathematical model of the following code

+3

+1

+1 +??????

1 Minute

! " = $ 4 &ℎ(" " = 0,1
! " − 1 -.ℎ(/&01(

recurrence!
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Writing a Recurrence

If the function runs recursively, our formula for the running time should 
probably be recursive as well. 
- Such a formula is called a recurrence.

! " = $ ! " − 1 + 2 if " > 1
1 otherwise

What does this say? 
- The input to ! is the size of the input to the Length. 
- If the input to T() is large, the running time depends on the recusive call.
- If not we can just use the base case.
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Another example
public int Mystery(int n){

if(n == 1) {
return 1;

} else {
for(int i = 0; i < n; i++){

for(int j = 0; j < n; j++){
System.out.println(“hi!”);

}
}
return Mystery(n/2)

}
}
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! " = $ % &ℎ(" " = 1
! "/2 + "- if n > 1

+1

+1

+1 n n



Solving Recurrences
How do we go from code model to Big O?

1. Explore the recursive pattern 

2. Write a new model in terms of “i”

3. Use algebra simplify the T away

4. Use algebra to find the “closed form”

Three Methods:

1. Tree Method – draw out the branching nature of recursion to find pattern

2. Unrolling – plug function into itself to find pattern

3. Master Theorem – plug and chug!
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Master Theorem
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! " =
$ %ℎ'" " = 1
)! "

* + ", -.ℎ'/%01'

Given a recurrence of the following form:

Then thanks to magical math brilliance we can know the following:

! " ∈ Θ ",log7 ) < 9

log7 ) = 9 ! " ∈ Θ ", log: "

log7 ) > 9 ! " ∈ Θ "<=>? @

If

If

If

then

then

then



Review: Logarithms
Logarithm – inverse of exponentials

!" #$ = & 'ℎ)& * = log. &
Examples:

20 = 4 ⇒ 2 = log0 4
30 = 9 ⇒ 2 = log5 9
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Apply Master Theorem
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! " =
1 %ℎ'" " ≤ 1
2! "

2 + " +,ℎ'-%./'

! " =
0 %ℎ'" " = 1

1! "
2 + "3 +,ℎ'-%./'

log7 1 = 8 ! " ∈ Θ "3 log; "
log7 1 > 8 ! " ∈ Θ "=>?@ A

If

If

! " ∈ Θ "3log7 1 < 8If then

then

then

Given a recurrence of the form:

a = 2
b = 2
c = 1
d = 1

log7 1 = 8 ⇒ log; 2 = 1

! " ∈ Θ "3 log; " ⇒ Θ "D log; "



Step 1: Code -> Recurrence
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public static int mystery(int arr[], int min, int max, int val) { 
if (max < 1) {

return -1;
} else { 

int mid = min + (max - l) / 2; 
if (arr[mid] == val) {

return mid; 
} 
if (arr[mid] > val) {

return binarySearch(arr, min, mid - 1, val); 
} else {

return binarySearch(arr, mid + 1, max, val); 
}

} 
} 



Reflecting on Master Theorem
The case 
- Recursive case conquers work more quickly than it divides work
- Most work happens near “top” of tree
- Non recursive work in recursive case dominates growth, nc term

The case 
- Work is equally distributed across call stack (throughout the “tree”)
- Overall work is approximately work at top level x height

The case 
- Recursive case divides work faster than it conquers work
- Most work happens near “bottom” of tree
- Leaf work dominates branch work
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! " =
$ %ℎ'" " = 1

)! "
* + ", -.ℎ'/%01'

log5 ) = 6 ! " ∈ Θ ", log9 "
log5 ) > 6 ! " ∈ Θ ";<=> ?

If

If

! " ∈ Θ ",log5 ) < 6If then

then

then

Given a recurrence of the form: log5 ) < 6

log5 ) = 6

log5 ) > 6

A')BC-/D ≈ $ ";<=> ?

ℎ'0Fℎ. ≈ log5 )
*/)"6ℎC-/D ≈ ",log5 )



Tree Method
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! "! "
2 + ! "

2 + "

! "
2 ! "

2

"
1. Draw an overall root representing the start of your family of recursive calls

2. How much work is done by the top recursive level?

3. How much of that work is delegated to downstream recursive calls?

4. How much work is done by each of those child recursive calls?

5. How much of that work is delegated to downstream recursive calls?

6. …

7. What does the last row of the tree look like?

8. Sum up all the work!

! "
4 + ! "

4 + "2 ! "
4 + ! "

4 + "2
"
2

"
2

! "
4 ! "

4 ! "
4 ! "

4
"
4

"
4

"
4

"
4

… … … … … … … …

Draw out call stack, how much work does each call do?

! " = '
1 )ℎ+" " ≤ 1

2! "
2 + " -.ℎ+/)01+

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1



Tree Method
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… … … … … … … …… … …… … … … …

How many pieces of 
work at each level?

How much work 
across each level?

1 n

2

4

8

n

n

n

n

n

& ' =
1 )ℎ+' ' ≤ 1
2& '

2 + ' ./ℎ+0)12+
How much work 

done by each piece?

n

3
4

3
44

3
45

6



Tree Method Formulas
How much work is done by recursive levels (branch nodes)?
1. How many recursive calls are on the i-th level of the tree? 

- i = 0 is overall root level

2. At each level i, how many inputs does a single node process? 
3. How many recursive levels are there? 

- Based on the pattern of how we get down to base case

How much work is done by the base case level (leaf nodes)?
1. How much work is done by a single leaf node? 
2. How many leaf nodes are there?
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!"#$%&'(" )*%+ = -
./0

123456278.95:595;8

<$=>"%?*@"&A"%B"("C ' >%D<#ℎF*%+(')

>D&" #D&" )*%+ = C"DIF*%+×C"DIK*$<L = C"DIF*%+×<$=>"%?*@"&A"%B"("C123456278.95:595;8MN

O < =
1 )ℎ"< < ≤ 1

2O
<
2 + < *Lℎ"%)'&"

numberNodesPerLevel(i) = 2i

inputsPerRecursiveCall(i) = (n/ 2i)
numRecursiveLevels = log2n - 1

O(< > 1) = -
./0

UVWX 1YN

2.
<
2.

leafWork = 1
leafCount = 2log2n = n

O < ≤ 1 = 1 2;Z[\1 = <

O < = -
./0

UVWX 1YN

2.
<
2. + < = < log\ < + <L*LDC )*%+ = %"#$%&'(" )*%+ + >D&" #D&" )*%+ =



Tree Method Practice
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! " =
4 %ℎ'" " ≤ 1
3! "

4 + ,"- ./ℎ'0%12'
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Answer the following 
questions:
1. How many nodes on 

each branch level?
2. How much work for 

each branch node?
3. How much work per 

branch level?
4. How many branch 

levels?
5. How much work for 

each leaf node?
6. How many leaf 

nodes?

EXAMPLE PROVIDED BY CS 161 – JESSICA SU
HTTPS://WEB.STANFORD.EDU/CLASS/ARCHIVE/CS/CS161/CS161.1168/LECTURE3.PDF

! "
4 ! "

4 ! "
4

! "
4 + ! "

4 + ! "
4 + ,"-

https://web.stanford.edu/class/archive/cs/cs161/cs161.1168/lecture3.pdf


Tree Method Practice
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Level (i) Number of 
Nodes

Work per 
Node

Work per 
Level

0 1 !"2 !"2

1 3 !
"

4

% 3
16
!"%

2 9 !
"
16

% 9
256

!"%

base 3+,-./ 4 12+,-./

1. How many nodes on each branch level?

2. How much work for each branch node?

3. How much work per branch level?

4. How many branch levels?

5. How much work for each leaf node?

6. How many leaf nodes?

30

!
"

40
%

log. " − 1

4

5 " =
4 7ℎ9" " ≤ 1

35
"

4
+ !"% <=ℎ9>7?@9

Combining it all together…

30!
"

40
%
=

3

16

0

!"%

5 " = A
0BC

+,-D / EF
3

16

0

!"% + 4"+,-.G

3+,-D / power of a log

H+,-I J = K+,-I L
"+,-D G

5 Minutes



Tree Method Practice
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! " = $
%&'

()*+ , -. 3
16

%
2"3 + 4"()*67

! " = 2"3 1
1 − 3

16
+ 4"()*67

! " = 2"3
3
16

()*+ ,
− 1

3
16 − 1

+ 4"()*67

! " ∈ :("3)

$
%&=

>
2?(@) = 2$

%&=

>
?(@)

factoring out a constant

! " = 2"3 $
%&'

()*+ , -. 3
16

%
+ 4"()*67

$
%&'

,-.
A% = A, − 1

A − 1

finite geometric series

$
%&'

B
A% = 1

1 − A

infinite geometric series

when -1 < x < 1

If we’re trying to prove upper bound…

! " = 2"3$
%&'

B 3
16

%
+ 4"()*67

Closed form:


