
Lecture 7: Solving
Recurrences

CSE 373: Data Structures and
Algorithms

CSE 373 19 SP - KASEY CHAMPION 1

Thought Experiment

Discuss with your neighbors: Imagine you are writing an implementation of the List interface that stores
integers in an Array. What are some ways you can assess your program’s correctness in the following
cases:

Expected Behavior
- Create a new list
- Add some amount of items to it
- Remove a couple of them

Forbidden Input
- Add a negative number
- Add duplicates
- Add extra large numbers

Empty/Null
- Call remove on an empty list
- Add to a null list
- Call size on an null list

CSE 373 SP 19 - KASEY CHAMPION 2

Boundary/Edge Cases
- Add 1 item to an empty list

- Set an item at the front of the list

- Set an item at the back of the list

Scale
- Add 1000 items to the list

- Remove 100 items in a row

- Set the value of the same item 50 times

5 Minutes

Extra Credit:
Go to PollEv.com/champk
Text CHAMPK to 22333 to join
session, text “1” or “2” to select your
answer

Administriva

3CSE 373 19 WI - KASEY CHAMPION

Solving Recurrences

4CSE 373 19 WI - KASEY CHAMPION

Modeling Recursion

public int factorial(int n) {

if (n == 0 || n == 1) {

return 1;

} else {
return n * factorial(n-1);

}

}

5

Write a mathematical model of the following code

+3

+1

+1 +??????

1 Minute

! " = $ 4 &ℎ(" " = 0,1
! " − 1 -.ℎ(/&01(

recurrence!

CSE 373 19 SP - KASEY CHAMPION

Writing a Recurrence

If the function runs recursively, our formula for the running time should
probably be recursive as well.
- Such a formula is called a recurrence.

! " = $! " − 1 + 2 if " > 1
1 otherwise

What does this say?
- The input to ! is the size of the input to the Length.
- If the input to T() is large, the running time depends on the recusive call.
- If not we can just use the base case.

CSE 332 - SU 18 ROBBIE WEBER 6

Another example
public int Mystery(int n){

if(n == 1) {
return 1;

} else {
for(int i = 0; i < n; i++){

for(int j = 0; j < n; j++){
System.out.println(“hi!”);

}
}
return Mystery(n/2)

}
}

CSE 332 - SU 18 ROBBIE WEBER 7

! " = $ % &ℎ(" " = 1
! "/2 + "- if n > 1

+1

+1

+1 n n

Solving Recurrences
How do we go from code model to Big O?

1. Explore the recursive pattern

2. Write a new model in terms of “i”

3. Use algebra simplify the T away

4. Use algebra to find the “closed form”

Three Methods:

1. Tree Method – draw out the branching nature of recursion to find pattern

2. Unrolling – plug function into itself to find pattern

3. Master Theorem – plug and chug!

CSE 373 SP 19 - KASEY CHAMPION 8

Master Theorem

CSE 373 SP 18 - KASEY CHAMPION 10

! " =
$ %ℎ'" " = 1
)! "

* + ", -.ℎ'/%01'

Given a recurrence of the following form:

Then thanks to magical math brilliance we can know the following:

! " ∈ Θ ",log7) < 9

log7) = 9 ! " ∈ Θ ", log: "

log7) > 9 ! " ∈ Θ "<=>? @

If

If

If

then

then

then

Review: Logarithms
Logarithm – inverse of exponentials

!" #$ = & 'ℎ)& * = log. &
Examples:

20 = 4 ⇒ 2 = log0 4
30 = 9 ⇒ 2 = log5 9

CSE 373 SP 19 - KASEY CHAMPION 11

Apply Master Theorem

CSE 373 SP 18 - KASEY CHAMPION 12

! " =
1 %ℎ'" " ≤ 1
2! "

2 + " +,ℎ'-%./'

! " =
0 %ℎ'" " = 1

1! "
2 + "3 +,ℎ'-%./'

log7 1 = 8 ! " ∈ Θ "3 log; "
log7 1 > 8 ! " ∈ Θ "=>?@ A

If

If

! " ∈ Θ "3log7 1 < 8If then

then

then

Given a recurrence of the form:

a = 2
b = 2
c = 1
d = 1

log7 1 = 8 ⇒ log; 2 = 1

! " ∈ Θ "3 log; " ⇒ Θ "D log; "

Step 1: Code -> Recurrence

CSE 373 SP 19 - KASEY CHAMPION 13

public static int mystery(int arr[], int min, int max, int val) {
if (max < 1) {

return -1;
} else {

int mid = min + (max - l) / 2;
if (arr[mid] == val) {

return mid;
}
if (arr[mid] > val) {

return binarySearch(arr, min, mid - 1, val);
} else {

return binarySearch(arr, mid + 1, max, val);
}

}
}

Reflecting on Master Theorem
The case
- Recursive case conquers work more quickly than it divides work
- Most work happens near “top” of tree
- Non recursive work in recursive case dominates growth, nc term

The case
- Work is equally distributed across call stack (throughout the “tree”)
- Overall work is approximately work at top level x height

The case
- Recursive case divides work faster than it conquers work
- Most work happens near “bottom” of tree
- Leaf work dominates branch work

CSE 373 SP 18 - KASEY CHAMPION 14

! " =
$ %ℎ'" " = 1

)! "
* + ", -.ℎ'/%01'

log5) = 6 ! " ∈ Θ ", log9 "
log5) > 6 ! " ∈ Θ ";<=> ?

If

If

! " ∈ Θ ",log5) < 6If then

then

then

Given a recurrence of the form: log5) < 6

log5) = 6

log5) > 6

A')BC-/D ≈ $ ";<=> ?

ℎ'0Fℎ. ≈ log5)
*/)"6ℎC-/D ≈ ",log5)

Tree Method

CSE 373 SP 18 - KASEY CHAMPION 20

! "! "
2 + ! "

2 + "

! "
2 ! "

2

"
1. Draw an overall root representing the start of your family of recursive calls

2. How much work is done by the top recursive level?

3. How much of that work is delegated to downstream recursive calls?

4. How much work is done by each of those child recursive calls?

5. How much of that work is delegated to downstream recursive calls?

6. …

7. What does the last row of the tree look like?

8. Sum up all the work!

! "
4 + ! "

4 + "2 ! "
4 + ! "

4 + "2
"
2

"
2

! "
4 ! "

4 ! "
4 ! "

4
"
4

"
4

"
4

"
4

… … … … … … … …

Draw out call stack, how much work does each call do?

! " = '
1)ℎ+" " ≤ 1

2! "
2 + " -.ℎ+/)01+

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Tree Method

21

n

n
2

n
2

n
4

n
4

n
4

n
4

n
8

n
8

n
8

n
8

n
8

n
8

n
8

n
8

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

… … … … … … … …… … …… … … … …

How many pieces of
work at each level?

How much work
across each level?

1 n

2

4

8

n

n

n

n

n

& ' =
1)ℎ+' ' ≤ 1
2& '

2 + ' ./ℎ+0)12+
How much work

done by each piece?

n

3
4

3
44

3
45

6

Tree Method Formulas
How much work is done by recursive levels (branch nodes)?
1. How many recursive calls are on the i-th level of the tree?

- i = 0 is overall root level

2. At each level i, how many inputs does a single node process?
3. How many recursive levels are there?

- Based on the pattern of how we get down to base case

How much work is done by the base case level (leaf nodes)?
1. How much work is done by a single leaf node?
2. How many leaf nodes are there?

CSE 373 SP 18 - KASEY CHAMPION 22

!"#$%&'(")*%+ = -
./0

123456278.95:595;8

<$=>"%?*@"&A"%B"("C ' >%D<#ℎF*%+(')

>D&" #D&")*%+ = C"DIF*%+×C"DIK*$<L = C"DIF*%+×<$=>"%?*@"&A"%B"("C123456278.95:595;8MN

O < =
1)ℎ"< < ≤ 1

2O
<
2 + < *Lℎ"%)'&"

numberNodesPerLevel(i) = 2i

inputsPerRecursiveCall(i) = (n/ 2i)
numRecursiveLevels = log2n - 1

O(< > 1) = -
./0

UVWX 1YN

2.
<
2.

leafWork = 1
leafCount = 2log2n = n

O < ≤ 1 = 1 2;Z[\1 = <

O < = -
./0

UVWX 1YN

2.
<
2. + < = < log\ < + <L*LDC)*%+ = %"#$%&'(")*%+ + >D&" #D&")*%+ =

Tree Method Practice

23

! " =
4 %ℎ'" " ≤ 1
3! "

4 + ,"- ./ℎ'0%12'

,n-

, n
4

-

… …

, n
4

-
, n
4

-

, n
16

-
, n
16

-
, n
16

-
, n
16

-
, n
16

-
, n
16

-
, n
16

-
, n
16

-
, n
16

-

… … …… … …… … …… … …… … …… … …… … …… … ……

4 4

Answer the following
questions:
1. How many nodes on

each branch level?
2. How much work for

each branch node?
3. How much work per

branch level?
4. How many branch

levels?
5. How much work for

each leaf node?
6. How many leaf

nodes?

EXAMPLE PROVIDED BY CS 161 – JESSICA SU
HTTPS://WEB.STANFORD.EDU/CLASS/ARCHIVE/CS/CS161/CS161.1168/LECTURE3.PDF

! "
4 ! "

4 ! "
4

! "
4 + ! "

4 + ! "
4 + ,"-

https://web.stanford.edu/class/archive/cs/cs161/cs161.1168/lecture3.pdf

Tree Method Practice

CSE 373 SP 18 - KASEY CHAMPION 24

Level (i) Number of
Nodes

Work per
Node

Work per
Level

0 1 !"2 !"2

1 3 !
"

4

% 3
16
!"%

2 9 !
"
16

% 9
256

!"%

base 3+,-./ 4 12+,-./

1. How many nodes on each branch level?

2. How much work for each branch node?

3. How much work per branch level?

4. How many branch levels?

5. How much work for each leaf node?

6. How many leaf nodes?

30

!
"

40
%

log. " − 1

4

5 " =
4 7ℎ9" " ≤ 1

35
"

4
+ !"% <=ℎ9>7?@9

Combining it all together…

30!
"

40
%
=

3

16

0

!"%

5 " = A
0BC

+,-D / EF
3

16

0

!"% + 4"+,-.G

3+,-D / power of a log

H+,-I J = K+,-I L
"+,-D G

5 Minutes

Tree Method Practice

CSE 373 SP 18 - KASEY CHAMPION 25

! " = $
%&'

()*+ , -. 3
16

%
2"3 + 4"()*67

! " = 2"3 1
1 − 3

16
+ 4"()*67

! " = 2"3
3
16

()*+ ,
− 1

3
16 − 1

+ 4"()*67

! " ∈ :("3)

$
%&=

>
2?(@) = 2$

%&=

>
?(@)

factoring out a constant

! " = 2"3 $
%&'

()*+ , -. 3
16

%
+ 4"()*67

$
%&'

,-.
A% = A, − 1

A − 1

finite geometric series

$
%&'

B
A% = 1

1 − A

infinite geometric series

when -1 < x < 1

If we’re trying to prove upper bound…

! " = 2"3$
%&'

B 3
16

%
+ 4"()*67

Closed form:

