T —
PRSP YR T,

Lecture 6: More Code
AnalySiS, Testing Algorithms

CSE 373 19 SP - KASEY CHAMPION

CSE 373: Data Structures and

Warm Up - Code Modeling

public static boolean 1sPrime (i1nt n) {
for (int 1 = 2; 1 < n; 1++){

1f (n 5 1 == 0) { +2
return false; +1 n-2
}

}

return true; +1

Approach

Each basic operation = +1
Conditionals = worst case test operations + branch

Loop = iterations (loop body)

Extra Credit;

Go to PollEv.com/champk Answer:
Text CHAMPK to 22333 to join code model: 3n — 5 or C;n+ C,
session, text “1” or “2" to select your simplified tight—O bound: 0(n)

answer CSE 373 SP 19 - KASEY CHAMPION

Administrivia

Homework 2 is out!
You should have a repo

If you have issues submitting post on piazza

CSE 373 19 SP - KASEY CHAMPION 3

Modeling Complex Loops

Write a mathematical model of the following code

for (int 1 = 0; 1 < n; 1i++) {
for (int j = 0; j < 1i; J++) {
System.out.println (“Hello!”);
}

Keep an eye on loop bounds!

CSE 373 19 WI - KASEY CHAMPION 4

Modeling Complex Loops

for (int 1 = 0; 1 < n; 1++) { .
for (int § = 0; 3 < 1i; J++) |
System.out.print (YHello! 7),; « 0+1+2+3+.+i-1 — p
}
Sysem.out.println() ;

}
'Hm=60+1+2+3+m+hﬂ

J
f Definition: Summation

How do we Summations! n b
model thispart? 1+2+3+4+..+n= Z i Z F(0) =fa) +f(a + 1) +f(a+2) + ... +f(b-2) + f(b-1) + f(b)
i=1 i:a
N1 ie1 On the ith iteration | Output of ith
, , of the outer loop | iteration
T(n) = z Z 1 What is the Big O?
i=0 j=0 0

1 “Hello! "
2 “Hello! Hello! “

| - KASEY CHAMPION

for (int

i =0; 1 < n; 1i++)

{

Simplifying Summations

for (int J = 0; J < 1; J++) {
System.out.println (“Hello!”); - T(n) =

}

n-1i-1

=35

i=0 j=0

n—1
1 :Z1-i

1=0

n-—1

=1) 1

i=0

Summation of a constant
n-—1

zC:CH

=0

Factoring out a constant
b

D ef = czb:f(i)

i=a

Find closed form using
summation identities
(given on exams)

n—-1i-1
simplified
1 # closed form # :)
; JZ:(; tight big O
nn-1) 1, 1 2
= — —n2__ -0
2 2t T (%)

CSE 373 19 SP — KASEY CHAMPION (THANKS TO MICHAEL LEE) 6

https://courses.cs.washington.edu/courses/cse373/19sp/resources/math/summation/

Practice — Worksheet #2

public static void primesUpToN(int n) {
System.out.print ("1 2 "); .1

for (int 1 = 3; 1 <= n; 1++) |
for (int 7 = 2; 7 < 1; J++){
1f (3 '=1 && 7 5 1 == 0) o . o
System.out.print(z + " "),
break; +1 285 28 5
} J=2 =3 j=2
}
System.out.println () ;+1
}
(n—-2)(n-3)

T(n) =1+ 31325055 = 1+ 20N 5 = 1+ 250531 —2) = 1+ 505 i —X1552) — =1+ 50—~ (n-2)(2))

Adjusting Summation Factoring Gauss's
summation of a out a identity
bounds constant constant

CSE 373 SP 19 - KASEY CHAMPION

Definition: Big-0O

We wanted to find an upper bound on our algorithm’s
running time, but

- We don’t want to care about constant factors.
- We only care about what happens as n gets large.

Big-O

f(n) is 0(g(n)) if there exist positive

constants ¢, ny such that for all n = n,,

fn) <c-g)

We also say that g(n) “dominates” f(n)

O(g(n)) is the “family” or “set” of all functions that
are dominated by g(n)

T(n) gn) =n
f(n) = 10log(n)
> n
100
Why c?
T(n)

— g(n) = 2log(n)

f(n) = log(n)

100

CSE 332 SU 18 - ROBBIE WEBER

8

Practice — Worksheet #3

2

. 3 T
Prove the function f(n) = n? — ?n € 0(n?) by finding a ¢ and ny. Show your work
nZ
7Sc-nzwhenczzandno =1
3n
-5 < c-n*whenc=1andny, =1
combing it all together ...
n? 3n<1 2 2<32 " 4
5~ Synttnf <onfwhenng =

3
c=3 and ny, = 1 show that f(n) < g(n))

CSE 373 SP 19 - KASEY CHAMPION

O, Omega, Theta [oh

Big-O is an upper bound

- My code takes at most this long to run

Big-Omega is a lower bound

Big-Omega

f(n) is Q(g(n)) if there exist positive

constants ¢, n, such that for alln = ng,

f(n) =zc-gn)
Big Theta is “equal to”

Big-Theta

f(n)is ©(g(n)) if
f(n)is 0(g(n)) and f (n) is Q(g(n)).

N

10.2
10.8

N

{Q Y o
NN o

N

15

QYN®T ™9 Y 0 Q A
O—r—N ™ oI o

11.4

12.6
13.2
13.8
14.4
15.6
16.2
16.8
17.4

N X
~ <

()2 ==——Q)(f(n))

O(f(n))

CSE 332 SU 18 - ROBBIE WEBER 10

Practice — Worksheet

600

500

isPrime runtime

”,,f”

/ O(n)

————————————————

Take 2 Minutes

What is the tight big-O bound?
O(n)

What is the tight big-Q bound?
Q(1)
What is the big-0 bound?

Doesn't exist :/

CSE 373 SP 19 - KASEY CHAMPION

Viewing O as a class

Big-O can also be defined as a family or set of functions.

Big-O (alternative definition)
O(g(n)) is the set of all functions f(n) such

that there exist positive constants c,ny such
thatforalln > ny, f(n) <c-ghn)

You can write f(n) € O(g(n))
Equivalentto “f(n) is 0(g(n))” or “f(n) = O(g(n))”

The set of all functions that run in linear time (i.e. 0(n))

is a “complexity class.”
* We never write 0(5n) instead of O(n) — they’re the same thing!

. . 6. . .
* It’s like writing p instead of 3. It just looks weird.

CSE 332 SU 18 - ROBBIE WEBER

12

Practice

Sn+3€0(n) True
n€Oo(n+3) True
5n + 3 =0(n) True
O(5n+3)=0(n) True
O(n?) =0O(n) false
n>€ 0(1) ralse

n’> € O(n) False

n’ € O(n?) True

n? € O(n3) True

n? € O(n'%) True

Big-O
f(n) € 0(g(n)) if there exist positive
constants ¢, n, such that for all n = n,,

fn) <c-g)

Big-Omega

f(n) € Q(g(n)) if there exist positive
constants ¢, n, such that for all n = n,,

fn)=zc-gn)

Big-Theta

f(n) € 6(g(n)) if
f(n)is 0(g(n)) and f(n) is Q(g(n)).

CSE 373 WI 18 — MICHAEL LEE 13

Examples

4n2 € Q(1) 4n” € 0O(1)

true false

4n2 € Q(n) 4n? € O(n)

true false

4n2 € Q(n?) 4n?% € O(n?)

true true

4n? € Q(nd) 4n?% € O(n3)

false true

4n2 € Q(n%) 4n” € O(n%)
true

false

Big-O
f(n) € 0(g(n)) if there exist positive
constants ¢, n, such that for all n = n,,

fn) <c-g)

Big-Omega

f(n) € Q(g(n)) if there exist positive

constants ¢, n, such that for all n = n,,

fn)=zc-gn)

Big-Theta

f(n) € 6(g(n)) if
f(n)is 0(g(n)) and f(n) is Q(g(n)).

CSE 373 SP 18 - KASEY CHAMPION 14

Testing Your Code

CSE 373 19 WI - KASEY CHAMPION

Testing

Computers don’t make mistakes- people do!
“I'm almost done, | just need to make sure it works”
— Naive 14Xers

Software Test: a separate piece of code that exercises the code you are assessing by providing
input to your code and finishes with an assertion of what the result should be.

Isolate - break your code into small modules

Build in increments - Make a plan from simplest to most complex cases

Test as you go - As your code grows, so should your tests

CSE 373 SP 18 - KASEY CHAMPION 18

Types of Tests

Black Box

Behavior only — ADT requirements

From an outside point of view

Does your code uphold its contracts with its users?
Performance/efficiency

White Box
Includes an understanding of the implementation
Written by the author as they develop their code
Break apart requirements into smaller steps
“unit tests” break implementation into single assertions

CSE 373 SP 18 - KASEY CHAMPION

19

What to test?

Expected behavior
The main use case scenario
Does your code do what it should given friendly conditions?

Forbidden Input
What are all the ways the user can mess up?

Empty/Null
Protect yourself!
How do things get started?

0, -1, null, empty collections

Boundary/Edge Cases
First items

Last item
Full collections

Scale
Is there a difference between 10, 100, 1000, 10000 items?

CSE 373 SP 18 - KASEY CHAMPION 20

Testing Strategies

You can’t test everything
Break inputs into categories

What are the most important pieces of code?

Test behavior in combination
Call multiple methods one after the other

Call the same method multiple times

Trust no one!
How can the user mess up?

If you messed up, someone else might
Test the complex logic

CSE 373 19 WI - KASEY CHAMPION 21

Thought Experiment

Discuss with your neighbors: Imagine you are writing an implementation of the List interface that stores

integers in an Array. What are some ways you can assess your program’s correctness in the following
cases:

Expected Behavior Boundary/Edge Cases
Create a new list Add 1 item to an empty list
Add some amount of items to it Set an item at the front of the list
Remove a couple of them Set an item at the back of the list
Forbidden Input Scale
Add a negative number Add 1000 items to the list

Add duplicates

Remove 100 items in a row
Add extra large numbers

Set the value of the same item 50 times
Empty/Null
Call remove on an empty list
Add to a null list
Call size on an null list

CSE 373 SP 18 - KASEY CHAMPION 22

JUnit

JUnit: a testing framework that works with IDEs to give you a special GUI experience when
testing your code

public void myTest () {
Map<String, Integer> basicMap = new LinkedListDict<String, Integer>();
basicMap.put (“Kasey”, 42);
(42, basicMap.get (“Kasey”)) ;
}

Assertions:
assertEquals (iteml, item2)
assertTrue (Boolean expression)
assertFalse (bollean expression)
assertNotNull (item)

More: https://junit.org/junit5/docs/5.0.1/api/org/junit/jupiter/api/Assertions.html CSE 373 SP 18 - KASEY CHAMPION ”3

https://junit.org/junit5/docs/5.0.1/api/org/junit/jupiter/api/Assertions.html

