
Lecture 6: More Code
Analysis, Testing

CSE 373: Data Structures and
Algorithms

CSE 373 19 SP - KASEY CHAMPION 1

Warm Up - Code Modeling
public static boolean isPrime(int n) {

for (int i = 2; i < n; i++){
if (n % i == 0) {

return false;
}

}
return true;

}

CSE 373 SP 19 - KASEY CHAMPION 2

Extra Credit:
Go to PollEv.com/champk
Text CHAMPK to 22333 to join
session, text “1” or “2” to select your
answer

Take 3 Minutes

Approach
-> start with basic operations, work inside out for control structures
- Each basic operation = +1
- Conditionals = worst case test operations + branch
- Loop = iterations (loop body)

code model: 3" − 5 or %&" + %(
simplified tight-O bound:)(")

Answer:

+1

+1
+2

n - 2

Administrivia
Homework 2 is out!
- You should have a repo
- If you have issues submitting post on piazza

CSE 373 19 SP - KASEY CHAMPION 3

Modeling Complex Loops

for (int i = 0; i < n; i++) {
for (int j = 0; j < i; j++) {

System.out.println(“Hello!”);
}

}

4

+1 nn f(n) = n2

Keep an eye on loop bounds!

Write a mathematical model of the following code

CSE 373 19 WI - KASEY CHAMPION

Modeling Complex Loops
for (int i = 0; i < n; i++) {

for (int j = 0; j < i; j++) {
System.out.print(“Hello! ”);

}
Sysem.out.println();

}

5

+1 0 + 1 + 2 + 3 +…+ i-1 n

Summations!
1 + 2 + 3 + 4 +… + n = !

"#$

%
& = f(a) + f(a + 1) + f(a + 2) + … + f(b-2) + f(b-1) + f(b)

Definition: Summation

!
"#'

(
)(&)

T(n) = !
"#,

%-$
!
.#,

"-$
1

T(n) = (0 + 1 + 2 + 3 +…+ i-1)

How do we
model this part?

What is the Big O?

CSE 373 19 WI - KASEY CHAMPION

On the ith iteration
of the outer loop

Output of ith
iteration

0 “”
1 “Hello! ”
2 “Hello! Hello! “
3 “Hello! Hello!

Simplifying Summations

CSE 373 19 SP – KASEY CHAMPION (THANKS TO MICHAEL LEE) 6

! " = $
%&'

()*
$
+&'

%)*
1

= $
%&'

()*
1�- = 1$

%&'

()*
- = " " − 1

2

Summation of a constant

$
%&'

()*
0 = 0"

Factoring out a constant

$
%&1

2
03 - = 0$

%&1

2
3(-)

Gauss’s Identity

$
%&'

()*
- = " " − 1

2

= 1
2"

6 − 12"

for (int i = 0; i < n; i++) {
for (int j = 0; j < i; j++) {

System.out.println(“Hello!”);
}

}

Find closed form using
summation identities

(given on exams)

closed form simplified
tight big O

! " = $
%&'

()*
$
+&'

%)*
1 = 7(89)

https://courses.cs.washington.edu/courses/cse373/19sp/resources/math/summation/

Practice – Worksheet #2
public static void primesUpToN(int n) {

System.out.print("1 2 ");
for (int i = 3; i <= n; i++) {

for (int j = 2; j < i; j++){
if (j != i && j % i == 0) {

System.out.print(i + " ");
break;

}
}
System.out.println();

}

CSE 373 SP 19 - KASEY CHAMPION 7

! " = 1 + ∑'()* ∑+(,'-. 5 = 1 + ∑'(0*-)∑+(0'-) 5 = 1 + ∑'(0*-) 5(2 − 2) = 1 + 5(∑'(0*-) 2 −∑'(0*-) 2) − =1 + 5((*-,) *-), - (n-2)(2))

+1

+1

+1
+4

8
+(,

'-.
5 8

'()

*
8
+(,

'-.
5

Adjusting
summation

bounds

Summation
of a

constant

Factoring
out a

constant

Gauss’s
identity

Take 3 Minutes

Definition: Big-O
We wanted to find an upper bound on our algorithm’s
running time, but
- We don’t want to care about constant factors.
- We only care about what happens as ! gets large.

8

"(!) is %(& !) if there exist positive
constants ', !) such that for all ! ≥ !),

" ! ≤ ' ⋅ & !

Big-O

We also say that & ! “dominates” "(!)

CSE 332 SU 18 - ROBBIE WEBER

O(g(n)) is the “family” or “set” of all functions that
are dominated by g(n)

Why !)?

Why '?

- !

!

& ! = !

" ! = 10log(!)

100

!
100

- !
& ! = 2log(!)

" ! = log(!)

Practice – Worksheet #3

Prove the function ! " = $%
& −

($
& ∈ * "& by finding a + and ",. Show your work

CSE 373 SP 19 - KASEY CHAMPION 9

"&
2 ≤ + / "& 0ℎ2" + = 1

2 4"5 ", = 1

−3"2 ≤ + / "& 0ℎ2" + = 1 4"5 ", = 1
+789:"; :< 4== <7;2<ℎ2>…

"&
2 − 3"2 ≤ 1

2"
& + "& ≤ 3

2"
& 0ℎ2" ", = 1

A+ = 3
2 4"5 ", = 1 Bℎ70 <ℎ4< ! " ≤ ;(")

Take 3 Minutes

O, Omega, Theta [oh my?]
Big-O is an upper bound
- My code takes at most this long to run

Big-Omega is a lower bound

Big Theta is “equal to”

CSE 332 SU 18 - ROBBIE WEBER 10

!(#) is Ω(& #) if there exist positive
constants ', #) such that for all # ≥ #),

! # ≥ ' ⋅ & #

Big-Omega

!(#) is Θ(& #) if
! # is -(& #) and ! # is Ω(& #).

Big-Theta
0

0.5

1

1.5

2

2.5

3

3.5

0
0.

6
1.

2
1.

8
2.

4 3
3.

6
4.

2
4.

8
5.

4 6
6.

6
7.

2
7.

8
8.

4 9
9.

6
10

.2
10

.8
11

.4 12
12

.6
13

.2
13

.8
14

.4 15
15

.6
16

.2
16

.8
17

.4

f(n)2 Ω(f(n)) O(f(n))

Practice – Worksheet #4

CSE 373 SP 19 - KASEY CHAMPION 11

0

100

200

300

400

500

600

3 15 27 39 51 63 75 87 99 11
1

12
3

13
5

14
7

15
9

17
1

18
3

19
5

20
7

21
9

23
1

24
3

25
5

26
7

27
9

29
1

30
3

31
5

32
7

33
9

35
1

36
3

37
5

38
7

39
9

41
1

42
3

43
5

44
7

45
9

47
1

48
3

49
5

isPrime runtime

O(n)

Ω(1)

What is the tight big-O bound?

What is the tight big-Ω bound?

What is the big-Θ bound?

O(n)

Ω(1)

Doesn’t exist :/

Take 2 Minutes

Viewing O as a class
Big-O can also be defined as a family or set of functions.

CSE 332 SU 18 - ROBBIE WEBER 12

O(# $) is the set of all functions & $ such
that there exist positive constants ', $) such
that for all $ ≥ $), & $ ≤ ' ⋅ # $

Big-O (alternative definition)

You can write & $ ∈ . # $
Equivalent to “& $ is .(# $)” or “& $ = . # $ ”

The set of all functions that run in linear time (i.e. .($))
is a “complexity class.”
• We never write .(5$) instead of .($) – they’re the same thing!
• It’s like writing 12 instead of 3. It just looks weird.

4 $

$

log($)
1

$2

Practice

5n + 3 ∈ O(n)

n ∈ O(5n + 3)

5n + 3 = O(n)

O(5n + 3) = O(n)

O(n2) = O(n)

n2 ∈ O(1)

n2 ∈ O(n)

n2 ∈ O(n2)

n2 ∈ O(n3)

n2 ∈ O(n100)

CSE 373 WI 18 – MICHAEL LEE 13

True

True

True

True

False

False

False

True

True

True

3 Minutes

"($) ∈ &(' $) if there exist positive
constants (, $* such that for all $ ≥ $*,

" $ ≤ (⋅ ' $

Big-O

"($) ∈ Ω(' $) if there exist positive
constants (, $* such that for all $ ≥ $*,

" $ ≥ (⋅ ' $

Big-Omega

"($) ∈ Θ(' $) if
" $ is &(' $) and " $ is Ω(' $).

Big-Theta

Examples

4n2 ∈ Ω(1)

true
4n2 ∈ Ω(n)

true
4n2 ∈ Ω(n2)

true
4n2 ∈ Ω(n3)

false
4n2 ∈ Ω(n4)

false

CSE 373 SP 18 - KASEY CHAMPION 14

4n2 ∈ O(1)

false
4n2 ∈ O(n)

false
4n2 ∈ O(n2)

true
4n2 ∈ O(n3)

true
4n2 ∈ O(n4)

true

"($) ∈ &(' $) if there exist positive
constants (, $* such that for all $ ≥ $*,

" $ ≤ (⋅ ' $

Big-O

"($) ∈ Ω(' $) if there exist positive
constants (, $* such that for all $ ≥ $*,

" $ ≥ (⋅ ' $

Big-Omega

"($) ∈ Θ(' $) if
" $ is &(' $) and " $ is Ω(' $).

Big-Theta

Testing Your Code

17CSE 373 19 WI - KASEY CHAMPION

Testing
Computers don’t make mistakes- people do!

“I’m almost done, I just need to make sure it works”
– Naive 14Xers

Software Test: a separate piece of code that exercises the code you are assessing by providing
input to your code and finishes with an assertion of what the result should be.

1. Isolate - break your code into small modules

2. Build in increments - Make a plan from simplest to most complex cases

3. Test as you go - As your code grows, so should your tests

CSE 373 SP 18 - KASEY CHAMPION 18

Types of Tests
Black Box
- Behavior only – ADT requirements
- From an outside point of view
- Does your code uphold its contracts with its users?
- Performance/efficiency

White Box
- Includes an understanding of the implementation
- Written by the author as they develop their code
- Break apart requirements into smaller steps
- “unit tests” break implementation into single assertions

CSE 373 SP 18 - KASEY CHAMPION 19

What to test?
Expected behavior

- The main use case scenario
- Does your code do what it should given friendly conditions?

Forbidden Input
- What are all the ways the user can mess up?

Empty/Null
- Protect yourself!
- How do things get started?
- 0, -1, null, empty collections

Boundary/Edge Cases
- First items
- Last item
- Full collections

Scale
- Is there a difference between 10, 100, 1000, 10000 items?

CSE 373 SP 18 - KASEY CHAMPION 20

Testing Strategies
You can’t test everything
- Break inputs into categories
- What are the most important pieces of code?

Test behavior in combination
- Call multiple methods one after the other
- Call the same method multiple times

Trust no one!
- How can the user mess up?

If you messed up, someone else might
- Test the complex logic

21CSE 373 19 WI - KASEY CHAMPION

Thought Experiment

Discuss with your neighbors: Imagine you are writing an implementation of the List interface that stores
integers in an Array. What are some ways you can assess your program’s correctness in the following
cases:

Expected Behavior
- Create a new list
- Add some amount of items to it
- Remove a couple of them

Forbidden Input
- Add a negative number
- Add duplicates
- Add extra large numbers

Empty/Null
- Call remove on an empty list
- Add to a null list
- Call size on an null list

CSE 373 SP 18 - KASEY CHAMPION 22

Boundary/Edge Cases
- Add 1 item to an empty list

- Set an item at the front of the list

- Set an item at the back of the list

Scale
- Add 1000 items to the list

- Remove 100 items in a row

- Set the value of the same item 50 times

5 Minutes

JUnit
JUnit: a testing framework that works with IDEs to give you a special GUI experience when
testing your code
@Test

public void myTest() {

Map<String, Integer> basicMap = new LinkedListDict<String, Integer>();

basicMap.put(“Kasey”, 42);

assertEquals(42, basicMap.get(“Kasey”));

}

Assertions:
- assertEquals(item1, item2)
- assertTrue(Boolean expression)
- assertFalse(bollean expression)
- assertNotNull(item)

CSE 373 SP 18 - KASEY CHAMPION 23More: https://junit.org/junit5/docs/5.0.1/api/org/junit/jupiter/api/Assertions.html

https://junit.org/junit5/docs/5.0.1/api/org/junit/jupiter/api/Assertions.html

