
Lecture 5: Algorithm
Analysis and Modeling

CSE 373: Data Structures and
Algorithms

CSE 373 19 SP - KASEY CHAMPION 1

Warm Up

Construct a mathematical function modeling the
worst case runtime for the following functions
public void mystery1(ArrayList<String> list) {

for (int i = 0; i < 3000; i++) {

for (int j = 0; j < 1000; j++) {

int index = (i + j) % list.size();

System.out.println(list.get(index));

}

for (int j = 0; j < list.size(); j++) {

System.out.println(“:)”);

}

}

}

CSE 373 SP 18 - KASEY CHAMPION 2

Possible answer
T(n) = 3000 (6000 + n)

5 Minutes

Socrative:
www.socrative.com
Room Name: CSE373

Please enter your name as: Last, First

Approach
-> start with basic operations, work inside out for control structures
- Each basic operation = +1
- Conditionals = worst case test operations + branch
- Loop = iterations (loop body)

+1

+2

+4

n(1)

1000(6)

public void mystery2(ArrayList<String> list) {

for (int i = 0; i < list.size(); i++) {

for (int j = 0; j < list.size(); j++) {

System.out.println(list.get(0));

}

}

}

+1
n(1)

Possible answer
T(n) = n2

n(n(1))

3000(1000(6) + n(1))

http://www.socrative.com/

Adminstrivia
HW 1 Due Tonight at 11:59pm

HW 2 goes live Today

Please fill out class survey

Read Pair Programming Doc if you haven’t!

CSE 373 SP 18 - KASEY CHAMPION 3

Why don’t we care about exact constants?
Not enough information to compute precise constants

Depends on too many factors (underlying hardware, background processes, temperature etc…)

We really care about the growth of the function

Big O…

CSE 373 SP 18 - KASEY CHAMPION 4

Comparing Functions

CSE 373 SP 18 - KASEY CHAMPION 5

Asymptotic Analysis

asymptotic analysis – the process of mathematically representing runtime of a algorithm in
relation to the number of inputs and how that relationship changes as the number of inputs
grow

Two step process
1. Model – the process of mathematically representing how many operations a piece of code

will run in relation to the number of inputs n

2. Analyze – compare runtime/input relationship across multiple algorithms
1. Graph the model of your code where x = number of inputs and y = runtime

2. For which inputs will one perform better than the other?

CSE 373 SP 18 - KASEY CHAMPION 6

Function growth

CSE 373 SP 18 - KASEY CHAMPION 7

…but since both are linear
eventually look similar at large
input sizes
whereas h(n) has a distinctly
different growth rate

The growth rate for f(n) and
g(n) looks very different for
small numbers of input

But for very small input values
h(n) actually has a slower growth
rate than either f(n) or g(n)

Imagine you have three possible algorithms to choose between.
Each has already been reduced to its mathematical model ! " = " $ " = 4" ℎ " = "'

("

"

("

"

("

"

Review: Complexity Classes
complexity class – a category of algorithm efficiency based on the algorithm’s
relationship to the input size N

CSE 143 AU 18 – HUNTER SCHAFER 8

Class Big O If you double N… Example algorithm

constant O(1) unchanged Add to front of
linked list

logarithmic O(log2n) Increases slightly Binary search

linear O(n) doubles Sequential search

log-linear O(nlog2n) Slightly more
than doubles

Merge sort

quadratic O(n2) quadruples Nested loops
traversing a 2D array

cubic O(n3) Multiplies by 8 Triple nested loop

polynomial O(nc)

exponential O(cn) Multiplies
drastically

http://bigocheatsheet.com/

http://bigocheatsheet.com/

Moving from Model to Complexity Class
Say an algorithm runs 0.4N3 + 25N2 + 8N + 17
statements
17 is quickly dwarfed in the context of
thousands of inputs
We ignore constants like 25 because they are
tiny next to N
N3 is so powerful it dominates the overall
runtime
O(N3)

10# log # + 3#
5#* log # + 13#+
20# log log # + 2 # log #
2+-

CSE 373 SP 18 - KASEY CHAMPION 9

.(# log #)

Consider the runtime when N is extremely large

Multiplying by constant factors has little effect
on growth rate

Lower order terms don’t matter – delete them.

Highest order term dominates the overall rate of
change
Gives us a “simplified big-O”

. #+

.(# log #)

.(8-)

Definition: Big-O
We wanted to find an upper bound on our algorithm’s
running time, but
- We don’t want to care about constant factors.
- We only care about what happens as ! gets large.

10

"(!) is %(& !) if there exist positive
constants ', !) such that for all ! ≥ !),

" ! ≤ ' ⋅ & !

Big-O

We also say that & ! “dominates” "(!)

CSE 332 SU 18 - ROBBIE WEBER

O(g(n)) is the “family” or “set” of all functions that
are dominated by g(n)

Why !)?

Why '?

Applying Big O Definition

CSE 373 SP 18 - KASEY CHAMPION 11

! " = 10" + 15 ("Show that is

!(") is ((+ ") if there exist positive
constants ,, ". such that for all " ≥ ".,

! " ≤ , ⋅ + "

Big-O

Apply definition term by term
10" ≤ ,�" 2ℎ4" , = 10 !56 788 978:4; 5! "

15 ≤ ,�" 2ℎ4" , = 15 !56 " ≥ 1

Add up all your truths
10" + 15 ≤ 10" + 15" ≤ 25" !56 " ≥ 1

Select values for c and n0 and prove they validate the definition
Take = = >? and @A = B
10" ≤ 25" !56 788 978:4; 5! "
15 ≤ 25" !56 " ≥ 1
Thus because a c and n0 exist, f(n) is O(n)

Exercise: Proving Big O

Demonstrate that 5n2 + 3n + 6 is dominated by n3 by
finding a c and n0 that satisfy the definition of domination

5n2 + 3n + 6 ≤ 5n2 + 3n2 + 6n2 when n ≥ 1

5n2 + 3n2 + 6n2 = 14n2

5n2 + 3n + 6 ≤ 14n2 for n ≥ 1

14n2 ≤ c*n3 for c = ? n >= ?
!"
-> c = 14 & n >= 1

CSE 373 SP 18 - KASEY CHAMPION 12

$(&) is (() &) if there exist positive
constants *, &, such that for all & ≥ &,,

$ & ≤ * ⋅) &

Big-O

3 Minutes

Edge Cases

True or False: 10#$ + 15# is '(#))
It’s true – it fits the definition

CSE 332 SU 18 - ROBBIE WEBER 13

10#2 ≤ -�#3 /ℎ1# - = 10 345 # ≥ 1
15# ≤ -�#3 /ℎ1# - = 15 345 # ≥ 1
10#2 + 15# ≤ 10#3 + 15#3 ≤ 25#3 345 # ≥ 1
10#$ + 15# is '(#)) because 10#$ + 15# ≤ 25#3 345 # ≥ 1

Big-O is just an upper bound. It doesn’t have to be a good upper bound

If we want the best upper bound, we’ll ask you for a tight big-O bound.
' #$ is the tight bound for this example.
It is (almost always) technically correct to say your code runs in time '(#!).
DO NOT TRY TO PULL THIS TRICK ON AN EXAM. Or in an interview.

Why Are We Doing This?
You already intuitively understand what big-O means.

Who needs a formal definition anyway?
- We will.

Your intuitive definition and my intuitive definition might be different.

We’re going to be making more subtle big-O statements in this class.
- We need a mathematical definition to be sure we’re on the same page.

Once we have a mathematical definition, we can go back to intuitive thinking.
- But when a weird edge case, or subtle statement appears, we can figure out what’s correct.

CSE 332 SU 18 - ROBBIE WEBER 14

Function comparison: exercise
f(n) = n ≤ g(n) = 5n + 3?

f(n) = 5n + 3 ≤ g(n) = n?
f(n) = 5n + 3 ≤ g(n) = 1?

f(n) = 5n + 3 ≤ g(n) = n2?

f(n) = n2 + 3n + 2 ≤ g(n) = n3?

f(n) = n3 ≤ g(n) = n2 + 3n + 2 ?

CSE 373 WI 18 – MICHAEL LEE 15

True – all linear functions are treated as equivalent

True
False
True – quadratic will always dominate linear

True

False

3 Minutes

O, Omega, Theta [oh my?]
Big-O is an upper bound
- My code takes at most this long to run

Big-Omega is a lower bound

Big Theta is “equal to”

CSE 332 SU 18 - ROBBIE WEBER 16

!(#) is Ω(& #) if there exist positive
constants ', #) such that for all # ≥ #),

! # ≥ ' ⋅ & #

Big-Omega

!(#) is Θ(& #) if
! # is -(& #) and ! # is Ω(& #).

Big-Theta

Ω ! # ≤ ! # == 0 ! # ≤ -(! #)

f(n)

O(1)

O(log n)

O(n)

O(n2)

O(n3)

Is dominated by
f(n) ∈ O(g(n))

Dominates
f(n) ∈ Ω(g(n))

Viewing O as a class

Sometimes you’ll see big-O defined as a family or set of functions.

CSE 332 SU 18 - ROBBIE WEBER 17

O(# $) is the set of all functions & $ such that
there exist positive constants ', $) such that for
all $ ≥ $), & $ ≤ ' ⋅ # $

Big-O (alternative definition)

For that reason, some people write & $ ∈ . # $ where we wrote “& $ is .(# $)”.
Other people write “& $ = . # $ ” to mean the same thing.

The set of all functions that run in linear time (i.e. .($)) is a “complexity class.”

We never write .(5$) instead of .($) – they’re the same thing!

It’s like writing
1
2 instead of 3. It just looks weird.

Examples

4n2 ∈ Ω(1)

true
4n2 ∈ Ω(n)

true
4n2 ∈ Ω(n2)

true
4n2 ∈ Ω(n3)

false
4n2 ∈ Ω(n4)

false

CSE 373 SP 18 - KASEY CHAMPION 18

4n2 ∈ O(1)

false
4n2 ∈ O(n)

false
4n2 ∈ O(n2)

true
4n2 ∈ O(n3)

true
4n2 ∈ O(n4)

true

"($) ∈ &(' $) if there exist positive
constants (, $* such that for all $ ≥ $*,

" $ ≤ (⋅ ' $

Big-O

"($) ∈ Ω(' $) if there exist positive
constants (, $* such that for all $ ≥ $*,

" $ ≥ (⋅ ' $

Big-Omega

"($) ∈ Θ(' $) if
" $ is &(' $) and " $ is Ω(' $).

Big-Theta

Practice

5n + 3 ∈ O(n)

n ∈ O(5n + 3)

5n + 3 = O(n)

O(5n + 3) = O(n)

O(n2) = O(n)

n2 ∈ O(1)

n2 ∈ O(n)

n2 ∈ O(n2)

n2 ∈ O(n3)

n2 ∈ O(n100)

CSE 373 WI 18 – MICHAEL LEE 19

True

True

True

True

False

False

False

True

True

True

3 Minutes

"($) ∈ &(' $) if there exist positive
constants (, $* such that for all $ ≥ $*,

" $ ≤ (⋅ ' $

Big-O

"($) ∈ Ω(' $) if there exist positive
constants (, $* such that for all $ ≥ $*,

" $ ≥ (⋅ ' $

Big-Omega

"($) ∈ Θ(' $) if
" $ is &(' $) and " $ is Ω(' $).

Big-Theta

