
Lecture 4: Introduction to
Code Analysis

CSE 373: Data Structures and
Algorithms

CSE 373 19 SP - KASEY CHAMPION 1

Warm Up
Read through the code on the worksheet given

Come up with a test case for each of the described test categories

Expected Behavior

Forbidden Input

Empty/Null

Boundary/Edge

Scale

CSE 373 SP 18 - KASEY CHAMPION 2

Socrative:
www.socrative.com
Room Name: CSE373
Please enter your name as: Last, First

5 Minutes

add(1)
add(null)

Add into empty list
Add enough values to trigger internal array double and copy

Add 1000 times in a row

http://www.socrative.com/

Administrivia

- Fill out HW 2 Partner form

Posted on class webpage at top

Due TONIGHT Monday 4/8 by 11:59pm

- Fill out Student Background Survey, on website announcements

- Read Pair Programming Doc (on readings for Wednesday on calendar)

CSE 373 SP 18 - KASEY CHAMPION 3

Algorithm Analysis

CSE 373 SP 18 - KASEY CHAMPION 4

Code Analysis

How do we compare two pieces of code?
-Time needed to run
-Memory used
-Number of network calls
-Amount of data saved to disk
-Specialized vs generalized
-Code reusability
-Security

CSE 373 SP 18 - KASEY CHAMPION 5

Comparing Algorithms with Mathematical Models

Consider overall trends as inputs increase
- Computers are fast, small inputs don’t differentiate
- Must consider what happens with large inputs

Identify trends without investing in testing

Model performance across multiple possible scenarios
- Worst case - what is the most expensive or least performant an operation can be
- Average case – what functions are most likely to come up?
- Best case – if we understand the ideal conditions can increase the likelihood of those conditions?

CSE 373 SP 19 - KASEY CHAMPION 6

How many elements will be examined?
- What is the best case?

- What is the worst case?

- What is the average case?

Review: Sequential Search

CSE 373 SP 19 – KASEY CHAMPION (THANKS TO ZORAH FUNG) 8

sequential search: Locates a target value in a collection by examining each element sequentially
- Example: Searching the array below for the value 42:

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92 103

i

element found at index 0, 1 item examined, O(1)

element found at index 16 or not found, all elements examined, O(n)

public int search(int[] a, int val) {
for (int i = 0; i < a.length; i++) {

if (a[i] == val) {
return i;

}
}
return –1;

}

f(n) = n

most elements examined, O(n)

Review: Binary Search
binary search: Locates a target value in a sorted array or list by successively eliminating half of
the array from consideration.
- Example: Searching the array below for the value 42:

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92 103

min mid max

How many elements will be examined?
- What is the best case?

- What is the worst case?

- What is the average case?

element found at index 8, 1 item examined, O(1)

element found at index 9 or not found, ½ elements examined, O(?)

public static void binarySearch(int[] a, int val){
…
while (first <= last){

if (arr[mid] < key){
first = mid + 1;

} else if (arr[mid] == key){
return mid;

} else{
last = mid - 1;

}
mid = (first + last)/2;

}
return -1;

} 9CSE 373 SP 19 – KASEY CHAMPION (THANKS TO ZORAH FUNG)

Analyzing Binary Search
What is the pattern?
- At each iteration, we eliminate half of the

remaining elements

How long does it take to finish?
- 1st iteration – N/2 elements remain
- 2nd iteration – N/4 elements remain
- Kth iteration - N/2k elements remain

CSE 373 SP 18 - KASEY CHAMPION 10

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92 103

Finishes when

-> multiply right side by 2K

N = 2K

-> isolate K exponent with logarithm

log2N = k

!
2# = 1

!
2# = 1

Asymptotic Analysis
asymptotic analysis – the process of mathematically representing runtime of a algorithm in
relation to the number of inputs and how that relationship changes as the number of inputs
grow

Two step process

1. Model – reduce code run time to a mathematical relationship with number of inputs

2. Analyze – compare runtime/input relationship across multiple algorithms

CSE 373 SP 18 - KASEY CHAMPION 11

Code Modeling

CSE 373 SP 18 - KASEY CHAMPION 12

Code Modeling
code modeling – the process of mathematically representing how many operations a piece
of code will run in relation to the number of inputs n

Examples:
- Sequential search
- Binary search

CSE 373 SP 18 - KASEY CHAMPION 13

What counts as an “operation”?
Basic operations
- Adding ints or doubles
- Variable assignment
- Variable update
- Return statement
- Accessing array index or object field

Consecutive statements
- Sum time of each statement

! " = "
! " = $%&2"

Function calls
- Count runtime of function body

Conditionals
- Time of test + worst case scenario branch

Loops
- Number of iterations of loop body x runtime of loop

body

Assume all operations run in equivalent time

Modeling Case Study
Goal: return ‘true’ if a sorted array of ints contains duplicates

Solution 1: compare each pair of elements
public boolean hasDuplicate1(int[] array) {

for (int i = 0; i < array.length; i++) {
for (int j = 0; j < array.length; j++) {

if (i != j && array[i] == array[j]) {
return true;

}
}

}
return false;

}

Solution 2: compare each consecutive pair of elements
public boolean hasDuplicate2(int[] array) {

for (int i = 0; i < array.length - 1; i++) {
if (array[i] == array[i + 1]) {

return true;
}

}
return false;

}

CSE 373 WI 18 – MICHAEL LEE 14

Modeling Case Study: Solution 2
Goal: produce mathematical function representing runtime where n = array.length

Solution 2: compare each consecutive pair of elements
public boolean hasDuplicate2(int[] array) {

for (int i = 0; i < array.length - 1; i++) {
if (array[i] == array[i + 1]) {

return true;
}

}
return false;

}

linear -> O(n)

CSE 373 WI 18 – MICHAEL LEE 15

+1

+1

+4
loop = (n – 1)(body)

If statement = 5

! " = 5 " − 1 + 1

! "

Approach
-> start with basic operations, work inside out for control structures
- Each basic operation = +1
- Conditionals = worst case test operations + branch
- Loop = iterations (loop body)

Modeling Case Study: Solution 1
Solution 1: compare each consecutive pair of elements
public boolean hasDuplicate1(int[] array) {

for (int i = 0; i < array.length; i++) {
for (int j = 0; j < array.length; j++) {

if (i != j && array[i] == array[j]) {
return true;

}
}

}
return false;

}

quadratic -> O(n2)

CSE 373 WI 18 – MICHAEL LEE 16

+1

+1

+5
x n

6

x n

6n
6n2

Approach
-> start with basic operations, work inside out for control structures
- Each basic operation = +1
- Conditionals = worst case test operations + branch
- Loop = iterations (loop body)

! " = 5 " − 1 + 1

Your turn!

Write the specific mathematical code model for the following code and
indicate the big o runtime.

public void foobar (int k) {

int j = 0;

while (j < k) {

for (int i = 0; i < k; i++) {

System.out.println(“Hello world”);

}

j = j + 5;

}

}

CSE 373 SP 18 - KASEY CHAMPION 17

Approach
-> start with basic operations, work inside out for control structures
- Each basic operation = +1
- Conditionals = worst case test operations + branch
- Loop = iterations (loop body)

+1

+2

+1

+k(body)

+k/5 (body) ! " = " " + 2
5

quadratic -> O(k^2)

5 Minutes

