
Lecture 3: Maps and
Iterators

CSE 373: Data Structures and
Algorithms

CSE 373 19 SP - KASEY CHAMPION 1

Warm Up

2

Extra Credit:
Go to PollEv.com/champk
Text CHAMPK to 22333 to join
session, text “1” or “2” to select your
answer

ArrayList – optimize for addition in order, the ability to remove regardless of position and
update number of likes

CSE 373 19 SP - KASEY CHAMPION

Take 3 Minutes

Q: Which ADT and data structure implementation would you choose if
asked to implement a collection of comments for an Instagram post?

List ADT

get(index) return item at index
set(item, index) replace item at index
append(item) add item to end of list
insert(item, index) add item at index
delete(index) delete item at index
size() count of items

state

behavior

Set of ordered items
Count of items

Stack ADT

push(item) add item to top
pop() return and remove item at
top
peek() look at item at top
size() count of items
isEmpty() count of items is 0?

state

behavior

Set of ordered items
Number of items

Queue ADT

add(item) add item to back
remove() remove and return item
at front
peek() return item at front
size() count of items
isEmpty() count of items is 0?

state

behavior

Set of ordered items
Number of items

Administrivia

3CSE 373 19 WI - KASEY CHAMPION

Review: Complexity Class

4

complexity class: A category of algorithm efficiency based on the algorithm's relationship
to the input size N.

Complexity
Class

Big-O Runtime if you
double N

Example Algorithm

constant O(1) unchanged Accessing an index of
an array

logarithmic O(log2 N) increases slightly Binary search

linear O(N) doubles Looping over an array

log-linear O(N log2 N) slightly more than
doubles

Merge sort algorithm

quadratic O(N2) quadruples Nested loops!

...

exponential O(2N) multiplies drastically Fibonacci with recursion

CSE 373 19 WI - KASEY CHAMPION

Review: Maps
map: Holds a set of unique keys and a collection of
values, where each key is associated with one value.
- a.k.a. "dictionary", "associative array", "hash"

CSE 143 SP 17 – ZORA FUNG 5

key value

“you" 22

key value

“in" 37

key value

“the" 56

key value

“at" 43

map.get("the") 56

Dictionary ADT

put(key, item) add item to
collection indexed with key
get(key) return item
associated with key
containsKey(key) return if key
already in use
remove(key) remove item
and associated key
size() return count of items

state

behavior
Set of items & keys
Count of items

supported operations:
- put(key, value): Adds a given item into

collection with associated key, if the
map previously had a mapping for the
given key, old value is replaced

- get(key): Retrieves the value mapped to
the key

- containsKey(key): returns true if key is
already associated with value in map,
false otherwise

- remove(key): Removes the given key
and its mapped value

Implementing a Dictionary with an Array

6

ArrayDictionary<K, V>

put create new pair, add to
next available spot, grow
array if necessary
get scan all pairs looking
for given key, return
associated item if found
containsKey scan all pairs,
return if key is found
remove scan all pairs,
replace pair to be removed
with last pair in collection
size return count of items in
dictionary

state

behavior

Pair<K, V>[] data

Big O Analysis
put()

get()

containsKey()

remove()

size() O(1) constant

O(n) linear
O(n) linear

O(n) linear

O(n) linear

0 1 2 3

put(‘a’, 1)
put(‘b’, 2)
put(‘c’, 3)
put(‘d’, 4)
remove(‘b’)
put(‘a’, 97)

(‘a’, 1) (‘b’, 2)

Dictionary ADT

put(key, item) add item to
collection indexed with key
get(key) return item
associated with key
containsKey(key) return if key
already in use
remove(key) remove item
and associated key
size() return count of items

state

behavior

Set of items & keys
Count of items

(‘c’, 3)97) (‘d’, 4)

CSE 373 19 WI - KASEY CHAMPION

2 Minutes

Implementing a Dictionary with Nodes

7

LinkedDictionary<K, V>

put if key is unused, create new with
pair, add to front of list, else
replace with new value
get scan all pairs looking for given
key, return associated item if found
containsKey scan all pairs, return if
key is found
remove scan all pairs, skip pair to be
removed
size return count of items in
dictionary

state

behavior

front
size

Big O Analysis
put()

get()

containsKey()

remove()

size() O(1) constant

O(n) linear
O(n) linear

O(n) linear

O(n) linear

put(‘a’, 1)
put(‘b’, 2)
put(‘c’, 3)
put(‘d’, 4)
remove(‘b’)
put(‘a’, 97)

Dictionary ADT

put(key, item) add item to
collection indexed with key
get(key) return item
associated with key
containsKey(key) return if key
already in use
remove(key) remove item
and associated key
size() return count of items

state

behavior

Set of items & keys
Count of items

front

‘b’ 2‘c’ 3 ‘a’ 1‘d’ 4 97

CSE 373 19 SP - KASEY CHAMPION

2 Minutes

Design Decisions

8

Discuss with your neighbors: Which implementation of the Dictionary ADT would you choose if
asked to implement each of the following situations? For each consider the most important
functions to optimize.

Situation #1: You are writing a program to store incidents in a software service you maintain. The
keys will be time stamps, so you know they will be unique. You will be adding incidents as they
occur and removing them as they are resolved. You are more likely to need to access and remove
incidents that have recently been added to the collection.

LinkedDictionary – optimize for addition and removal of incidents without need of examining
entire data set reguarly

Situation #2: You are writing a program to store a rather small dictionary that maps exam
questions to the average score for that question across all students. The questions are numbered
sequentially starting at 0. Often you will want to read the entire set of scores in the order of the
test.

ArrayDictionary – optimize for accessing all entries in set in specific order or individually

CSE 373 19 SP - KASEY CHAMPION

Take 5 Minutes

Traversing Data
Array
for (int i = 0; i < arr.length; i++) {

System.out.println(arr[i]);

}

List
for (int i = 0; i < myList.size(); i++) {

System.out.println(myList.get(i));

}

for (T item : list) {

System.out.println(item);

}

CSE 373 SP 18 - KASEY CHAMPION 9

Iterator!

Review: Iterators
iterator: a Java interface that dictates how a collection of data should be traversed. Can only
move in the forward direction and in a single pass.

10

Iterator Interface

hasNext() – true if elements
remain
next() – returns next element

behavior

supported operations:

hasNext() – returns true if the iteration has more elements yet to be
examined

next() – returns the next element in the iteration and moves the iterator
forward to next item

ArrayList<Integer> list = new ArrayList<Integer>();
//fill up list

Iterator itr = list.iterator();
while (itr.hasNext()) {

int item = itr.next();
}

ArrayList<Integer> list = new ArrayList<Integer>();
//fill up list

for (int i : list) {
int item = i;

}

CSE 373 19 WI - KASEY CHAMPION

Implementing an Iterator
hasNext()

11

next()

23 14front

itr

true

itr

itr

itr

23 14front false

23 14front 4

23 14front 2
CSE 373 19 WI - KASEY CHAMPION

Testing Your Code

12CSE 373 19 WI - KASEY CHAMPION

Testing
Computers don’t make mistakes- people do!

“I’m almost done, I just need to make sure it works”
– Naive 14Xers

Software Test: a separate piece of code that exercises the code you are assessing by providing
input to your code and finishes with an assertion of what the result should be.

1. Isolate - break your code into small modules

2. Build in increments - Make a plan from simplest to most complex cases

3. Test as you go - As your code grows, so should your tests

CSE 373 SP 18 - KASEY CHAMPION 13

Types of Tests
Black Box
- Behavior only – ADT requirements
- From an outside point of view
- Does your code uphold its contracts with its users?
- Performance/efficiency

White Box
- Includes an understanding of the implementation
- Written by the author as they develop their code
- Break apart requirements into smaller steps
- “unit tests” break implementation into single assertions

CSE 373 SP 18 - KASEY CHAMPION 14

What to test?
Expected behavior

- The main use case scenario
- Does your code do what it should given friendly conditions?

Forbidden Input
- What are all the ways the user can mess up?

Empty/Null
- Protect yourself!
- How do things get started?
- 0, -1, null, empty collections

Boundary/Edge Cases
- First items
- Last item
- Full collections

Scale
- Is there a difference between 10, 100, 1000, 10000 items?

CSE 373 SP 18 - KASEY CHAMPION 15

Testing Strategies
You can’t test everything
- Break inputs into categories
- What are the most important pieces of code?

Test behavior in combination
- Call multiple methods one after the other
- Call the same method multiple times

Trust no one!
- How can the user mess up?

If you messed up, someone else might
- Test the complex logic

16CSE 373 19 WI - KASEY CHAMPION

Thought Experiment

Discuss with your neighbors: Imagine you are writing an implementation of the List interface that stores
integers in an Array. What are some ways you can assess your program’s correctness in the following
cases:

Expected Behavior
- Create a new list
- Add some amount of items to it
- Remove a couple of them

Forbidden Input
- Add a negative number
- Add duplicates
- Add extra large numbers

Empty/Null
- Call remove on an empty list
- Add to a null list
- Call size on an null list

CSE 373 SP 18 - KASEY CHAMPION 17

Boundary/Edge Cases
- Add 1 item to an empty list

- Set an item at the front of the list

- Set an item at the back of the list

Scale
- Add 1000 items to the list

- Remove 100 items in a row

- Set the value of the same item 50 times

5 Minutes

JUnit
JUnit: a testing framework that works with IDEs to give you a special GUI experience when
testing your code
@Test

public void myTest() {

Map<String, Integer> basicMap = new LinkedListDict<String, Integer>();

basicMap.put(“Kasey”, 42);

assertEquals(42, basicMap.get(“Kasey”));

}

Assertions:
- assertEquals(item1, item2)
- assertTrue(Boolean expression)
- assertFalse(bollean expression)
- assertNotNull(item)

CSE 373 SP 18 - KASEY CHAMPION 18More: https://junit.org/junit5/docs/5.0.1/api/org/junit/jupiter/api/Assertions.html

https://junit.org/junit5/docs/5.0.1/api/org/junit/jupiter/api/Assertions.html

