
Lecture 2: Stacks and
Queues

CSE 373: Data Structures and
Algorithms

CSE 373 19 SP - KASEY CHAMPION 1

Warm Up

1. Introduce yourself
to your neighbors J

2. Discuss your
answers

3. Log onto Poll
Everywhere

1. Go to
PollEv.com/champk

2. Text CHAMPK to 22333
to join session, text “1”
or “2” to select your
answer

4. Get extra credit!

CSE 373 19 SP - KASEY CHAMPION 2

List ADT

get(index) return item at index
set(item, index) replace item at index
append(item) add item to end of list
insert(item, index) add item at index
delete(index) delete item at index
size() count of items

state

behavior
Set of ordered items
Count of items

ArrayList<E>

get return data[index]
set data[index] = value
append data[size] =
value, if out of space
grow data
insert shift values to
make hole at index,
data[index] = value, if
out of space grow data
delete shift following
values forward
size return size

state

behavior

data[]
size

ArrayList
uses an Array as underlying storage

0 1 2 3 4

88.6 26.1 94.4 0 0

list free space

LinkedList<E>

get loop until index,
return node’s value
set loop until index,
update node’s value
append create new
node, update next of
last node
insert create new
node, loop until
index, update next
fields
delete loop until
index, skip node
size return size

state

behavior

Node front
size

LinkedList
uses nodes as underlying storage

88.6 26.1 94.4

Q: Which data structure implementation of the
List ADT would you choose to optimize for the
“delete” function?

Instructions
Take 3 Minutes

Administrivia
Course Stuff
- Class webpage: cs.washington.edu/373
- Piazza: piazza.com/washington/spring2019/cse373

Homework 1 Live!
- Individual assignment
- 14x content review
- GitLab/IntelliJ setup

- You will be created a git lab repo (TODAY)

Important Dates
- Midterm – Friday May 4th in class
- Final – Tuesday June 11th 8:30-10:20am

Homework 2 out next week, partner project
- You are responsible for finding your own partner
- Lecture, section, piazza, office hours
- Fill out partner form so we can generate repos

CSE 373 19 WI - KASEY CHAMPION 3

Review: “Big Oh”
efficiency: measure of computing resources used by code.
- can be relative to speed (time), memory (space), etc.
- most commonly refers to run time

Assume the following:
- Any single Java statement takes same amount of time to run.
- A method call's runtime is measured by the total of the statements inside the method's body.
- A loop's runtime, if the loop repeats N times, is N times the runtime of the statements in its body.

We measure runtime in proportion to the input data size, N.
- growth rate: Change in runtime as N gets bigger. How does this algorithm perform with larger and larger sets of data?

CSE 373 18 AU – SHRI MARE 4

b = c + 10;

for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {

dataTwo[j][i] = dataOne[i][j];
dataOne[i][j] = 0;

}
}
for (int i = 0; i < N; i++) {

dataThree[i] = b;
}

This algorithm runs 2N2 + N + 1 statements.
- We ignore constants like 2 because they are tiny next to N.
- The highest-order term (N2) “dominates” the overall runtime.
- We say that this algorithm runs "on the order of" N2.
- or O(N2) for short ("Big-Oh of N squared")

Review: Complexity Class

5

complexity class: A category of algorithm efficiency based on the algorithm's relationship
to the input size N.

Complexity
Class

Big-O Runtime if you
double N

Example Algorithm

constant O(1) unchanged Accessing an index of
an array

logarithmic O(log2 N) increases slightly Binary search

linear O(N) doubles Looping over an array

log-linear O(N log2 N) slightly more than
doubles

Merge sort algorithm

quadratic O(N2) quadruples Nested loops!

...

exponential O(2N) multiplies drastically Fibonacci with recursion

CSE 373 19 WI - KASEY CHAMPION

List ADT tradeoffs
Time needed to access i-th element:
- Array: O(1) constant time
- LinkedList: O(n) linear time

Time needed to insert at i-th element
- Array: O(n) linear time
- LinkedList: O(n) linear time

Amount of space used overall
- Array: sometimes wasted space
- LinkedList: compact

Amount of space used per element
- Array: minimal
- LinkedList: tiny extra

6

0 1 2 3 4

‘h’ ‘e’ ‘l’ ‘l’ ‘o’

‘h’ ‘o’ /‘e’ ‘l’ ‘l’

char[] myArr = new char[5]

front

LinkedList<Character> myLl = new LinkedList<Character>();

CSE 373 19 WI - KASEY CHAMPION

Design Decisions
Discuss with your neighbors: How would you implement the List ADT for each of the following
situations? For each consider the most important functions to optimize.
Situation #1: Write a data structure that implements the List ADT that will be used to store a list
of songs in a playlist.

LinkedList – optimize for growth of list and movement of songs
Situation #2: Write a data structure that implements the List ADT that will be used to store the
history of a bank customer’s transactions.

ArrayList – optimize for addition to back and accessing of elements
Situation #3: Write a data structure that implements the List ADT that will be used to store the
order of students waiting to speak to a TA at a tutoring center

LinkedList - optimize for removal from front
ArrayList – optimize for addition to back

7CSE 373 19 WI - KASEY CHAMPION

Take 3 Minutes

Review: What is a Stack?

stack: A collection based on the principle of adding elements

and retrieving them in the opposite order.

- Last-In, First-Out ("LIFO")

- Elements are stored in order of insertion.

- We do not think of them as having indexes.

- Client can only add/remove/examine

the last element added (the "top").

CSE 143 SP 17 – ZORA FUNG 8

top 3
2

bottom 1

pop, peekpush

Stack ADT

push(item) add item to top
pop() return and remove
item at top
peek() look at item at top
size() count of items
isEmpty() count of items is 0?

state

behavior
Set of ordered items
Number of items

supported operations:

- push(item): Add an element to the top of stack

- pop(): Remove the top element and returns it

- peek(): Examine the top element without removing it

- size(): how many items are in the stack?

- isEmpty(): true if there are 1 or more items in stack, false otherwise

Implementing a Stack with an Array

0 1 2 3

9

push(3)
push(4)
pop()
push(5)

3 45

numberOfItems = 012

ArrayStack<E>

push data[size] = value, if
out of room grow data
pop return data[size - 1],
size-1
peek return data[size - 1]
size return size
isEmpty return size == 0

state

behavior

data[]
size

Big O Analysis
pop()

peek()

size()

isEmpty()

push() O(1) Constant or
worst case O(N) linear

O(1) Constant
O(1) Constant

O(1) Constant

O(1) Constant

CSE 373 19 WI - KASEY CHAMPION

Stack ADT

push(item) add item to top
pop() return and remove
item at top
peek() look at item at top
size() count of items
isEmpty() count of items is 0?

state

behavior

Set of ordered items
Number of items

Implementing a Stack with Nodes

CSE 373 19 WI - KASEY CHAMPION 10

push(3)
push(4)
pop() numberOfItems = 012

LinkedStack<E>

push add new node at top
pop return and remove node at
top
peek return node at top
size return size
isEmpty return size == 0

state

behavior

Node top
size

Big O Analysis
pop()

peek()

size()

isEmpty()

push() O(1) Constant

O(1) Constant

O(1) Constant

O(1) Constant

O(1) Constant

Stack ADT

push(item) add item to top
pop() return and remove
item at top
peek() look at item at top
size() count of items
isEmpty() count of items is 0?

state

behavior

Set of ordered items
Number of items

4

3front

Review: What is a Queue?

queue: Retrieves elements in the order they were added.
- First-In, First-Out ("FIFO")

- Elements are stored in order of insertion but don't have indexes.

- Client can only add to the end of the queue, and can only
examine/remove the front of the queue.

CSE 143 SP 17 – ZORA FUNG 11

front back
1 2 3

addremove, peek
Queue ADT

add(item) add item to back
remove() remove and return
item at front
peek() return item at front
size() count of items
isEmpty() count of items is 0?

state

behavior
Set of ordered items
Number of items

supported operations:
- add(item): aka “enqueue” add an element to the back.

- remove(): aka “dequeue” Remove the front element and return.

- peek(): Examine the front element without removing it.

- size(): how many items are stored in the queue?

- isEmpty(): if 1 or more items in the queue returns true, false otherwise

Implementing a Queue with an Array

0 1 2 3 4

12

add(5)
add(8)
add(9)
remove()

numberOfItems = 0

5 8 9

123

ArrayQueue<E>

add – data[size] = value, if
out of room grow data
remove – return data[size -
1], size-1
peek – return data[size - 1]
size – return size
isEmpty – return size == 0

state

behavior

data[]
Size
front index
back index

Queue ADT

add(item) add item to back
remove() remove and return
item at front
peek() return item at front
size() count of items
isEmpty() count of items is 0?

state

behavior

Set of ordered items
Number of items

front = 0
back = 0

Big O Analysis
remove()

peek()

size()

isEmpty()

add() O(1) Constant or
worst case O(N) linear

O(1) Constant
O(1) Constant

O(1) Constant

O(1) Constant

12
1

CSE 373 19 WI - KASEY CHAMPION

Implementing a Queue with an Array

CSE 373 SP 18 - KASEY CHAMPION 13

0 1 2 3 4

numberOfItems = 3

front back

5 9 2 74

add(7)
add(4)
add(1)

45

0 1 2 3 4 5 6 7 8 9

5 9 2 7 4

front back

1

> Wrapping Around

Implementing a Queue with Nodes

14

add(5)
add(8)
remove()

LinkedQueue<E>

add – add node to back
remove – return and remove
node at front
peek – return node at front
size – return size
isEmpty – return size == 0

state

behavior

Node front
Node back
size

Queue ADT

add(item) add item to back
remove() remove and return
item at front
peek() return item at front
size() count of items
isEmpty() count of items is 0?

state

behavior

Set of ordered items
Number of items

Big O Analysis
remove()

peek()

size()

isEmpty()

add() O(1) Constant

O(1) Constant
O(1) Constant

O(1) Constant

O(1) Constant

CSE 373 19 WI - KASEY CHAMPION

numberOfItems = 012

85front

back

Design Decisions
Discuss with your neighbors: For each scenario select the appropriate ADT and implementation
to best optimize for the given scenario.

Situation #1: You are writing a program to manage a todo list with a very specific approach to
tasks. This program will order tasks for someone to tackle so that the most recent task is
addressed first. How would you store the transactions in appropriate order?

Stack – First in Last out
Nodes – make addition and removal of tasks very easy

Situation #2: You are writing a program to schedule jobs sent to a laser printer. The laser printer
should process these jobs in the order in which the requests were received. How would you store
the jobs in appropriate order?

Queue – First in First out
Array – want easy access to all items in queue in case you need to cancel a job

15CSE 373 19 SP - KASEY CHAMPION

Take 3 Minutes

Review: Generics
// a parameterized (generic) class
public class name<TypeParameter> {

...
}

- Forces any client that constructs your object to supply a type
- Don't write an actual type such as String; the client does that
- Instead, write a type variable name such as E (for "element") or T (for

"type")
- You can require multiple type parameters separated by commas

- The rest of your class's code can refer to that type by name

16

public class Box {
private Object object;
public void set(Object object) {

this.object = object;
}
public Object get() {

return object;
}

}

public class Box<T> {
private T t;
public void set(T t) {

this.t = t;
}
public T get() {

return t;
}

}

More details: https://docs.oracle.com/javase/tutorial/java/generics/types.html
CSE 373 19 WI - KASEY CHAMPION

https://docs.oracle.com/javase/tutorial/java/generics/types.html

