
Lecture 1: Welcome! CSE 373: Data Structures and 
Algorithms

1



2

Agenda

-Introductions
-Syllabus
-Dust off data structure cob webs
-Meet the ADT
-What is “complexity”?

CSE 373 19 WI - KASEY CHAMPION



Waitlist/ Overloads

-There are no overloads 
-I have no control over these things :/
-Email cse373@cs.washington.edu for all registration questions 
-Many students move around, likely a spot will open
-Keep coming to lecture!

3CSE 373 19 WI - KASEY CHAMPION

mailto:cse373@cs.washington.edu


I am Kasey Champion
Software Engineer @ Karat

High School Teacher @ Franklin High

champk@cs.washington.edu

Office in CSE 218

Office Hours: Wednesdays 9:30-11:30, Fridays 2:30-4:30 

Hello!

@techie4good

mailto:champk@cs.washington.edu


Class Style
Kasey has to go to her “real job” after this 
- The internets
- Your TAs
- Each other

Please come to lecture (yes, there will be panoptos)
- Warm Ups -> Extra Credit
- Collaboration
- Demos
- Ask questions! Point out mistakes!

Sections
- TAs = heroes
- Exam Practice problems
- Sections start this week

5CSE 373 19 WI - KASEY CHAMPION



Course Administration
Course Page
- All course content/announcements posted here
- Pay attention for updates!

Canvas
- Grades will be posted here

Office Hours
- Will be posted on Course Page
- Will start next week

Piazza
- Great place to discuss questions with other students
- Will be monitored by course staff
- No posting of project code!

Textbook
- Optional
- Data Structures and Algorithm Analysis in Java by Mark Allen Weiss

6CSE 373 19 WI - KASEY CHAMPION



Grade Break Down
Homework (55%)
- 4 Partner Projects (40%)

- Partners GREATLY encouraged
- Graded automatically
- Regrades available on some parts

- 3 Individual Assignments (15%)
- Must be individual
- Graded by TAs

Exams (45%)
- Midterm Exam – Friday May 4th in class (20%)
- Final Exam – Tuesday June 11th 8:30-10:30 here! (25%)

7CSE 373 19 SP - KASEY CHAMPION



Syllabus
Homework Policies
- 3 late days

- Both partners must use one 
- When you run out you will forfeit 20% each 24 hour period 

an assignment is late
- No assignment will be accepted more than 2 days late

Project Regrades
- Get back half your missed points for part 1 when you turn 

in part 2
- Fill out form if you think your grade is incorrect

Exams
- Allowed 8.5”x11” note page
- NO MAKE UPS!

- Let Kasey know ASAP if you cannot attend an exam

8

Academic Integrity
- No posting code on discussion board or ANYWHERE online
- We do run MOSS
- No directly sharing code with one another (except for 

partners)

Extra Credit
- Available for attending lecture
- Worth up to 0.05 GPA bump

CSE 373 19 SP - KASEY CHAMPION



Questions?

9

Clarification on syllabus, General complaining/moaning



What is this class about?

CSE 143 – OBJECT ORIENTED PROGRAMMING

10

- Classes and Interfaces

- Methods, variables and conditionals

- Loops and recursion

- Linked lists and binary trees

- Sorting and Searching

- O(n) analysis

- Generics

CSE 373 – DATA STRUCTURES AND ALGORITHMS

- Design decisions

- Design analysis

- Implementations of data structures

- Debugging and testing

- Abstract Data Types

- Code Modeling

- Complexity Analysis

- Software Engineering Practices

CSE 373 19 WI - KASEY CHAMPION



Data Structures and Algorithms

11

What are they anyway?



Basic Definitions

Data Structure
- A way of organizing and storing related data points
- Examples from CSE 14X: arrays, linked lists, stacks, queues, trees

Algorithm
- A series of precise instructions used to perform a task
- Examples from CSE 14X: binary search, merge sort, recursive backtracking

12CSE 373 19 WI - KASEY CHAMPION



Review: Clients vs Objects

CLIENT CLASSES

CSE 143 WI 18 – WHITAKER BRAND 13

A class that is executable, in Java this means it 
contains a Main method
public static void main(String[] args)

OBJECT CLASSES

A coded structure that contains data and 
behavior

Start with the data you want to hold, organize 
the things you want to enable users to do 
with that data



Abstract Data Types (ADT)
Abstract Data types
- A definition for expected operations and behavior

Start with the operations you want to do then define how those operations will play out on 
whatever data is being stored

CSE 143 WI 18 – STUART REGES 14

- each element is accessible by a 0-based index
- a list has a size (number of elements that have been added)
- elements can be added to the front, back, or elsewhere
- in Java, a list can be represented as an ArrayList object

Review: List - a collection storing an ordered sequence of elements



Review: Interfaces
interface: A list of methods that a class promises to 
implement.
- Interfaces give you an is-a relationship without code sharing.

- A Rectangle object can be treated as a Shape but inherits no code.

- Analogous to non-programming idea of roles or certifications:
- "I'm certified as a CPA accountant.

This assures you I know how to do taxes, audits, and consulting."
- "I'm 'certified' as a Shape, because I implement the Shape interface.

This assures you I know how to compute my area and perimeter."

public interface name {
public type name(type name, ..., type name);
public type name(type name, ..., type name);
...
public type name(type name, ..., type name);

}

CSE 143 SP 17 – ZORA FUNG 15

Example

// Describes features common to all 
// shapes.
public interface Shape {

public double area();
public double perimeter();

}



Review: Java Collections

Java provides some implementations of ADTs for you!

You used:

Lists List<Integer> a = new ArrayList<Integer>();
Stacks Stack<Character> c = new Stack<Character>();
Queues Queue<String> b = new LinkedList<String>();
Maps Map<String, String> d = new TreeMap<String, String>();

But some data structures you made from scratch… why?

Linked Lists - LinkedIntList was a collection of ListNode

Binary Search Trees – SearchTree was a collection of SearchTreeNodes

16CSE 373 19 WI - KASEY CHAMPION



Full Definitions
Abstract Data Type (ADT)
- A definition for expected operations and behavior
- A mathematical description of a collection with a set of supported operations and how they 

should behave when called upon
- Describes what a collection does, not how it does it
- Can be expressed as an interface
- Examples: List, Map, Set

Data Structure
- A way of organizing and storing related data points
- An object that implements the functionality of a specified ADT
- Describes exactly how the collection will perform the required operations
- Examples: LinkedIntList, ArrayIntList

17CSE 373 19 WI - KASEY CHAMPION



ADTs we’ll discuss this quarter

-List
-Set
-Map
-Stack
-Queue
-Priority Queue
-Graph
-Disjoint Set

18CSE 373 19 SP - KASEY CHAMPION



Case Study: The List ADT

list: stores an ordered sequence of information. 
- Each item is accessible by an index.
- Lists have a variable size as items can be added and remove

19CSE 373 19 WI - KASEY CHAMPION

List ADT

get(index) return item at index
set(item, index) replace item at index
append(item) add item to end of list
insert(item, index) add item at index
delete(index) delete item at index
size() count of items

state

behavior
Set of ordered items
Count of items

supported operations:
- get(index): returns the item at the given index
- set(value, index): sets the item at the given index to the given value
- append(value): adds the given item to the end of the list
- insert(value, index): insert the given item at the given index maintaining 

order
- delete(index): removes the item at the given index maintaining order
- size(): returns the number of elements in the list



Case Study: List Implementations

20CSE 373 19 WI - KASEY CHAMPION

List ADT

get(index) return item at index
set(item, index) replace item at index
append(item) add item to end of list
insert(item, index) add item at index
delete(index) delete item at index
size() count of items

state

behavior
Set of ordered items
Count of items

ArrayList<E>

get return data[index]
set data[index] = value
append data[size] = 
value, if out of space 
grow data
insert shift values to 
make hole at index, 
data[index] = value, if 
out of space grow data
delete shift following 
values forward
size return size 

state

behavior

data[]
size

LinkedList<E>

get loop until index, 
return node’s value
set loop until index, 
update node’s value
append create new node, 
update next of last node
insert create new node, 
loop until index, update 
next fields
delete loop until index, 
skip node
size return size 

state

behavior

Node front
size

ArrayList
uses an Array as underlying storage

LinkedList
uses nodes as underlying storage

0 1 2 3 4

88.6 26.1 94.4 0 0
88.6 26.1 94.4

list free space



Implementing ArrayList

CSE 373 SP 18 - KASEY CHAMPION 21

ArrayList<E>

get return data[index]
set data[index] = value
append data[size] = 
value, if out of space 
grow data
insert shift values to 
make hole at index, 
data[index] = value, if 
out of space grow data
delete shift following 
values forward
size return size 

state

behavior

data[]
size

0 1 2 3

insert(10, 0) 3 4 5

numberOfItems = 3

insert(element, index) with shifting

0 1 2 3

3 4 5

numberOfItems = 43

delete(index) with shifting

54310

4

delete(0) 10 3 4 5



0 1 2 3 4 5 6 7

Implementing ArrayList

CSE 373 SP 18 - KASEY CHAMPION 22

ArrayList<E>

get return data[index]
set data[index] = value
append data[size] = 
value, if out of space 
grow data
insert shift values to 
make hole at index, 
data[index] = value, if 
out of space grow data
delete shift following 
values forward
size return size 

state

behavior

data[]
size

0 1 2 3

append(2) 3 5

numberOfItems = 

append(element) with growth

410

4

2

5



Design Decisions

For every ADT there are lots of different ways to implement them

Based on your situation you should consider:
- Memory vs Speed
- Generic/Reusability vs Specific/Specialized
- One Function vs Another
- Robustness vs Performance

This class is all about implementing ADTs based on making the right design tradeoffs!
> A common topic in interview questions

CSE 373 19 WI - KASEY CHAMPION 23


