Homework 6: Analysis, sorting, and graphs

Due date: May 29, 11:59pm
Instructions:

Submiit a typed or neatly handwritten scan of your responses to the “Homework 6” assignment on Gradescope here:
https://www.gradescope.com/courses/47703. Make sure to log in to your Gradescope account using your UW
email address to access our course.

For more details on how to submit, see
https://courses.cs.washington.edu/courses/cse401/18au/hw/submitting_hw_guide.pdf.

These problems are meant to be done individually. If you want to discuss these problems with a partner or group,
make sure that you're writing your answers individually later on. Check our course’s collaboration policy if you
have questions.

1. Sorting algorithms

Answer each of the following in English (not code or pseudocode). Each subpart requires at most 2-4 sentences
to answer. Answers significantly longer than required will not receive full credit.

(a) Recall that merge sort works by taking an array, splitting it into two pieces, recursively sorting both pieces,
then combining both pieces in O (n) time. Suppose we split the array into three equally sized pieces instead
of two. And after we finish recursively sorting each of the three pieces, we first merge two of the three pieces
together, then we merge that with the third piece to get the final sorted result.

(i) Write the recurrence for this variation of merge sort

(i) Use the master theorem to give an asymptotic bound for this variation of merge sort. Show your work.

(iii) Compare the recurrence and bound of this variation with that of the standard merge sort. Is this variation
better or worse than the standard merge sort? Justify your answer.

https://www.gradescope.com/courses/47703
https://courses.cs.washington.edu/courses/cse401/18au/hw/submitting_hw_guide.pdf

(b) Suppose you are designing a search aggregator, which for a given query fetches search results from two
different search engines and presents an intersection of the two search results. Here is a simplified version of
this problem: Given two sorted integer arrays of lengths m and n, return a new array with elements that are
present in both input arrays. The input array may contain duplicates, but there should be no duplicates in the
output array. For example, if the input arrays are [17, 23, 23, 35, 43, 47, 69, 78, 80, 84, 84, 86] and [23, 35,
50], the output array should be [23, 35].

(i) Describe a brute force solution. What is the worst-case tight big-O time complexity of this brute solution?

(ii) Describe a solution that has worst-case tight-O (mlogn) time complexity.

(iii) Describe a solution that has worst-case tight-O (m + n) time complexity.

(iv) Between subparts (ii) and (iii) above, is one solution always better than the other (in terms of runtime)?
If so, which one and why? If not, describe the situation (in terms of m and n) when one is better than
the other.

(c) You're given an array where each element is an (age, name) pair representing guests at a DC-Marvel Universe
party in Shire. You have been asked to print each guest at the party in ascending order of their ages, but if
more than one guests have the same age, only the one who appears first in the array should be printed. For
example, if the input array is

[(23, Noah), (2000, Gandalf), (50, Frodo), (47, Emma), (23, Sophia), (83200, Superman), (23,
Alice), (47, Madison), (47, Mike), (150, Dumbledore)]

the output should be
(23, Noah) (47, Emma) (50, Frodo) (150, Dumbledore) (2000, Gandalf) (83200, Superman)

Describe a solution that takes O (1) space in addition to the provided input array. Your algorithm may modify
the input array. This party has some very old guests and your solution should still work correctly for parties
that have even older guests, so your algorithm can’t assume the maximum age of the partygoers. Give the
worst-case tight-O time complexity of your solution.

2. Running Dijkstra’s algorithm

Consider the following graph:

Run Dijkstra’s algorithm on this graph, starting on node a. To do this, fill out the table below and be sure to show
your work (cleanly cross out old values for distance and predecessor when updating existing values. For an example
of this, see the Week 8 section slides example of Dijkstra’s algorithm). If your handwriting is illegible, we may not
be able to grade your subimssion so you might consider typing up the table as well.

In the case of a tie, add the vertex that comes first alphabetically.

vertex distance predecessor processed
a 0 None
b 00
c 00
d 00
e 00
f 00
g 00
h o)
i 00

3. Using Dijkstra’s algorithm

In this question, we will think about how to answer shortest path problems where we have more than just a single
source and destination. Answer each of the following in English (not code or pseudocode). Each subpart requires
at most a few sentences to answer. Answers significantly longer than required will not receive full credit.

You are in charge of routing ambulances to emergency calls. You have k ambulances in your fleet that are parked
at different locations, and you need to dispatch them to an emergency to help as soon as possible. You have a map
of Seattle represented as the adjacency list for a weighted, directed graph G with |V| vertices and | E| edges, where
edge weights are positive numbers representing how long it takes to travel from the source to the destination. (The
number of ambulances, k, is significantly less than the number of vertices |V|.) You also have a list of vertices
representing the locations of each of your ambulances and the vertex representing where the new emergency is
located. Figure 1 shows an example graph.

oN 2R

1 é;@;\
1 1 N
/ 7@

10 2 !
o “

-~ 4%9/
Figure 1: An example graph where & = 3 (the highlighted vertices). The emergency is L, and 1, 2, 3 are ambulances.

F, R, Q are other intermediate locations. The shortest path from 1, 2, and 3 to L are 1-L, 2-Q-L, and 3-2-Q-L
respectively.

(a) First, let’s assume that you cannot alter the given graph and see what we can do.

(i) Describe how you would use Dijkstra’s algorithm to output each of the shortest paths from each ambu-
lance to the emergency vertex. (You should output the full route, not just how long it takes.)

(ii) What is the runtime for this process? Provide a simplified, tight big-O for the runtime in terms of &, |V,
and/or |E|. Use the final version of Dijkstra’s algorithm pseudocode from the lecture slides (Lecture 22)
to form your answer.

(iii) How much extra space does this process require? Provide a simplified, tight big-O for the memory usage
in terms of k, |V|], and/or |E|. Hint: consider the space required for the table of information built in
Dijkstra’s algorithm (tight-O (|V])) and the space required for the output.

(b) Now, by modifying the graph representation, we’re going to discover a more efficient algorithm for this prob-
lem. Suppose we made a copy of the graph G’ where every edge is reversed (also represented using an
adjacency list). That is, every edge from u to v in the original graph has a corresponding edge from v’ to «’
with the same weight in the new graph (where v' and v’ represent the copies of v and u respectively).

(i) What is the runtime of making this reversed copy of the graph? Provide a simplified, tight big-O for the
runtime in terms of k, |V, and/or | E|, assuming that our adjacency list uses hash dictionaries where each
put takes constant time.

(ii) How much extra space does it take to store the reversed copy of the graph? Provide a simplified, tight
big-O for the memory usage in terms of k, |V|, and/or |E|.

(iii) Describe how you would use Dijkstra’s algorithm on the reversed graph to output the shortest paths from
each ambulance to the emergency vertex. (Again, you should output the full route, not just how long it
takes.)

(iv) What is the runtime for this entire process (including creating the reversed graph and running Dijkstra’s
algorithm)? Provide a simplified, tight big-O for the runtime in terms of &, |V|, and/or |E|. As mentioned
before, use the final version of Dijkstra’s algorithm pseudocode from the lecture slides (Lecture 22) to
form your answer.

(v) How much extra space does this entire process require (including creating the reversed graph and running
Dijkstra’s algorithm)? Provide a simplified, tight big-O for the memory usage in terms of &, |V|, and/or
|E|. (Reminder: the space complexity of Dijkstra’s algorithm is tight-O (|V]).)

(vi) How is this algorithm better than the one in part (a)? How is it worse?

(c) Now, assume we need to route only the closest ambulence to an emergency. With this change, we should be
able to use an algorithm that does not require creating a copy of the entire graph.

©)

(i)

(iii)

@iv)

W)

(vi)

(vii)

Add a “dummy node” (i.e., a new vertex that doesn’t represent any real location) to the graph. We want
to run Dijkstra’s with our dummy node as the source. How should we connect it to the rest of the graph
such that we can later run Dijkstra’s only once to find the shortest path for the closest ambulance to
follow in real life? Be sure to describe both the direction and weight of any edges you add.

What is the runtime for adding the dummy node and new edges? Provide a simplified, tight big-O for
the runtime in terms of k, |V|, and/or | E|, assuming that our adjacency list uses hash dictionaries where
each put takes constant time.

How much extra space does it take to add the dummy node and new edges? Provide a simplified, tight
big-O for the memory usage in terms of k, |V, and/or |E|.

In your modified graph, once you have run Dijkstra’s algorithm, how do you tell which ambulance is
closest to the emergency, and how do you recover the shortest path?

What is the runtime for this entire process (including adding the dummy node and new edges and running
Dijkstra’s algorithm)? Provide a simplified, tight big-O for the runtime in terms of &, |V|, and/or |E|.
As mentioned before, use the final version of Dijkstra’s algorithm pseudocode from the lecture slides
(Lecture 22) to form your answer.

How much extra space does this entire process require (including adding the dummy node and new edges
and running Dijkstra’s algorithm)? Provide a simplified, tight big-O for the memory usage in terms of &,
|V|. (Reminder: the space complexity of Dijkstra’s algorithm is tight-O (|V]).)

How is this algorithm better than the one in part (b)? How is it worse?

4. Modeling with graphs

Suppose we are trying to implement a program that finds a shortest path between any two locations within Seat-
tle.

In case of a tie, the program should find us the route with the fewest vertices on the path. For example, suppose we
are considering two different routes from UW to the Space Needle. Both routes are 3 miles long, but route one has
3 vertices and route two has five vertices. In this case, our algorithm should pick route one.

(a) Explain how you would model this scenario as a graph. Answer the following questions in bullet points with
short sentences, then give an overall description on anything else that is relevant:

(i) What are your vertices and edges?

(i) What information do you store for each vertex and edge?

(iii) Is this a weighted graph or an unweighted one?

(iv) Is this a directed or undirected graph?

(v) Do you permit self-loops? Parallel edges?

If there are any other relevant details about your model, describe them here:

(b) At a high-level, how you would modify Dijkstra’s algorithm to find us the best route according to the specifi-
cations listed above. In particular, be sure to explain:

(i) How you combine or use different factors like road length and number of vertices in the path while
finding the best route.

(i) How you would modify Dijkstra’s algorithm to break ties in the manner described above. (State which
lines you would modify, if any, and/or lines you would add to the following pseudocode; state how and
when you would check and resolve ties, e.g., during the BFS search or after the BFS search)

Use the pseudocode for Dijkstra’s algorithm on the next page as a base for your response to this question;
it will be helpful to list specific lines that you will be modifying to fit this specific problem. Be sure your
algorithm makes sense when combined with the graph representation you chose in part a.

Answer in English (not code or pseudocode) and in at most a few sentences.

Answers significantly longer than required will not receive full credit.

Dijkstra(Graph G, Vertex source)
// Set up.
for (Vertex v : G.getVertices())
v.dist = INFINITY
G.getVertex(source).dist = 0
initialize MPQ as a Min Priority Queue, add source

// Main loop.
while(MPQ is not empty)
u = MPQ.removeMin()
for (Edge (u, v) : u.getEdges(u)
oldDist = v.dist
newDist = u.dist+weight(u,v)

if (newDist < oldDist)
v.dist = newDist
v.predecessor = u

if (oldDist == INFINITY)
MPQ.insert(v, newDist)

else
MPQ.updatePriority(v, newDist)

	1 Sorting algorithms
	2 Running Dijkstra's algorithm
	3 Using Dijkstra's algorithm
	4 Modeling with graphs

