
1. Applying Algorithms

(a) Given a directed graph G and a node v in the graph, devise an algorithm that returns whether or not v is part of
a cycle in G.

(b) If True, give a (short) explanation why. If False, give a counterexample:

Assume a connected graph G that we have run Dijkstra on, with start s and goal g. This means each node
has its predecessor set correctly.

After this, I increase the weight of some edge u → v on the shortest path between s and g (you don’t know
by how much). Although my shortest path may no longer be valid, I can look at all of v’s incoming edges, select
the cheapest one, and set v’s new predecessor to be the other endpoint of that cheapest edge.

This sets all of the predecessors correctly, and I have repaired my shortest path despite the edge change.
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2. Mechanical Questions Consider the following weighted, direct graph:
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(a) Starting from s, what is the path traversed when we add children alphabetically to the Queue using BFS? Ignore
the edge weights.

(b) Starting from s, what is the path traversed when we add children alphabetically to the Stack using DFS? Ignore
the edge weights.

(c) Starting from s, use Dijkstra’s to find the shortest distances to all the other nodes.

(d) Can we use Prim’s or Kruskal’s algorithm on this graph? Why or why not?
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3. Design Decisions

For each situation, describe a graph that can be used to model it and a graph algorithm that can be used. What
are the nodes? What are the edges? Is it weighted or directed?

(a) You are in Bellevue Square looking at the map. Because you had a very large bubble tea earlier in the day, you
need to find the closest restroom to your current location and get there as fast as possible.

(b) John Wick is at the Continental Hotel and he only has a pencil. He must take down all his enemies before they
take him down. John doesn’t care how far he has to walk or who he gets to first.

(c) Given a set of (x, y) points that visually form distinctly separated clusters, how do you cluster them into these
groups using a modified graph algorithm? We might be able to see the groups by eye, but computers are unable
to do so unless we tell them how to ’see’ using the algorithm.
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4. Runtime Analysis

Consider this recursive code:

1 // The Node class

2 public Node {

3 public boolean visited; // True if this node has been visited

4 public final Node[] children; // The children of this Node

5 public final value; // The value stored in this node

6 }

7

8 // The recursice method

9 public static boolean mystery(Node node, int val) {

10 node.visited = true;

11 if (node.value == val) {

12 return true;

13 }

14 Node[] children = node.children;

15 boolean b;

16 for (int i = 0; i < children.length; i++) {

17 if (children[i].visited != true && mystery(children[i], val)) {

18 return true;

19 }

20 }

21 return false;

22 }

(a) How is this graph represented? What advantages/disadvantages does it have to using a Dictionary implementation?

(b) What is the recursive method doing?

(c) Which graph algorithm is this most similar to and why?

(d) What is the worst-case and its runtime?

(e) What is the best-case and its runtime?

(f) Is this version more or less efficient (time and/or memory) compared to a non-recursive version using the Dictionary
implementation of graphs? Why? (Hint: how would you implement this method if this graph was a Dictionary?)
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