
4

Median-of-3 Decision Tree

a ⩻ b

b ⩻ c

No Yes

a ⩻ c

a c b

Yes

c a b

No

a ⩻ c

b ⩻ c b a c

b c ac b a

YesNo

No Yes

No Yes

a b c

5

Sorting with Decision Trees

int[] decisionTreeSort(int a, int b, int c) {

 if (a < b) {

 if (b < c) return {a, b, c};

 else if (a < c) return {a, c, b};

 else return {c, a, b};

 } else {

 if (c < b) return {b, a, c};

 else if (c < a) return {b, c, a};

 else return {c, b, a};

 }

}

In the worst case, how many questions would you need to ask
to definitively sort {a, b, c, d}?

6 8
A036604: Sorting numbers: minimal number of comparisons needed to sort n elements (Neil Sloane/OEIS); Towards Optimal Sorting of 16 Elements (Marcin Peczarski/arXiv)

Optimal Comparison Sort

Reductions set upper bounds on runtime.

Theoretical optimality sets lower bounds.

On random arrays, decision tree sorting is
optimal in the number of comparisons.

Cost model. Number of comparisons.

Optimal decision tree sort doesn’t exist.
Provably optimal for N < 16 and N = 22.

Upper Bound for N!

Goal. Find an asymptotic complexity bound for the function log(N!).

Subgoal. Find an upper bound for the function N!

10

Q Upper Bound for log(N!)

Goal. Find an asymptotic complexity bound for the function log(N!).

Subgoal. Find an upper bound for the function log(N!)

12

Q

Lower Bound for log(N!)

Goal. Find an asymptotic complexity bound for the function log(N!).

Subgoal. Find a lower bound for the function log(N!)

14

Q What can we say about decision tree sorting?

16

Algorithm Design Paradigms

Greedy Algorithms. Consider each option
in order of lowest-cost.

• Prim’s Algorithm.
• Kruskal’s Algorithm.
• Dijkstra’s Algorithm.

Caveat. Can lead to suboptimal solutions.

Dijkstra’s algorithm on negative edge
weighted graphs.

Divide-and-Conquer Algorithms. Solve
two or more subproblems recursively, and
then combine the results.

• Merge sort.
• Quicksort.

Prototypical usage. Turn brute-force N2
runtime algorithm into N log N algorithm.

20
Algorithms (Robert Sedgewick, Kevin Wayne/Princeton)

Algorithm Design Process

Hypothesize. How do invariants affect the
behavior for each operation?

Identify. What strategies have we used
before? What examples can we apply?

Plan. Propose a new way from findings.

Analyze. Does the plan do the job? What
are potential problems with the plan?

Create. Implement the plan.

Evaluate. Check implemented plan.

Find a lower and upper bound. Define a
slow but totally correct solution. Build a
mental model: identify key properties.

Consider each algorithm that you know.
Which ones might work? How do the
existing algorithms break down?

Apply an algorithm design idea. Perform a
reduction: transform input and output.
Or modify the data structures used.

Use an algorithm design paradigm.

21

Counting Inversions

Given a permutation of length N, count the number of inversions.

3 inversions: 2–1, 3–1, 7–6

Lower bound? Upper bound? Desired runtime? Algorithm paradigm?

22

Q

Algorithms (Robert Sedgewick, Kevin Wayne/Princeton)

0 2 3 1 4 5 7 6

Optical Character Recognition

Suppose we’re building an optical character recognition system.

We want to separate lines of text. There is some white space between the lines but problems
like noise and the tilt of the page makes it hard to find.

How can we do line segmentation?

24

Q

The Algorithm Design Manual (Steven Skiena/Springer)

