Tree Traversal Orderings

Level-Order Traversal. Visit top-to-bottom, left-to-right (like reading in English): DBFACEG

Depth-First Traversals.
Traverse deep nodes (A, C, E, G) before shallow ones (D, B, F).
Note: "Traversing" a node is different than "visiting" a node.
3 types: **Preorder, Inorder, Postorder.**

Depth-First Traversals

Preorder Traversal.
"Visit" a node, then traverse its children.

```java
preOrder(BSTNode x) {
    if (x == null) return;
    print(x.key)
    preOrder(x.left)
    preOrder(x.right)
}
```

Inorder Traversal.
Traverse left child, "visit", then traverse right child.

```java
inOrder(BSTNode x) {
    if (x == null) return;
    inOrder(x.left)
    print(x.key)
    inOrder(x.right)
}
```

Postorder Traversal.
Traverse left, traverse right, then "visit."

```java
postOrder(BSTNode x) {
    if (x == null) return;
    postOrder(x.left)
    postOrder(x.right)
    print(x.key)
}
```
Depth-First Traversals: Visual Trick (for humans)

First, trace a path around the graph from the top going counter-clockwise.

Preorder. "Visit" when passing the left.

Inorder. "Visit" when passing the bottom.

Postorder. "Visit" when passing the right.

Alternate Tree Definition

Tree. Consists of a set of nodes and a set of edges that connect those nodes.

Invariant. There is exactly one path between any two nodes.

Graph Definition

Graph. Consists of a set of nodes and a set of zero or more edges.

Each edge connects any two nodes. Not all nodes need to be connected.

Simple Graph Definition

Simple Graph. A graph with no self-loops and no parallel edges.

Unless otherwise stated, all graphs in this course are simple graphs.
s-t Connectivity

Let's solve a classic graph problem called the **s-t connectivity problem**.

Given source vertex \(s \) and a target vertex \(t \), does there exist a path between \(s \) and \(t \)?

Try to come up with an algorithm for \(\text{connected}(s, t) \).

Applying Tree Traversal

One possible recursive algorithm for \(\text{connected}(s, t) \).

1. Does \(s == t \)? If so, return true.
2. Otherwise, if \(\text{connected}(v, t) \) for any neighbor \(v \) of \(s \), return true.
3. Return false.

What is problematic about this algorithm?

Depth-First Search

One possible recursive algorithm for \(\text{connected}(s, t) \).

1. **Mark** \(s \) as visited.
2. Does \(s == t \)? If so, return true.
3. Otherwise, if \(\text{connected}(v, t) \) for any **unmarked** neighbor \(v \) of \(s \), return true.
4. Return false.

Each vertex visited at most once.

Depth-First Search.
s-t Connectivity

connected(s, t):
- Mark s.
- Does s == t? If so, return true.
- Otherwise, if connected(v, t) for any unmarked neighbor v of s, return true.
- Return false.

DepthFirstPaths Demo

Goal: Find a path from s to every other reachable vertex, visiting each vertex at most once. dfs(v) is as follows:
- Mark v.
- For each unmarked adjacent vertex w:
 - set edgeTo[w] = v.
 - dfs(w)

<table>
<thead>
<tr>
<th>#</th>
<th>marked</th>
<th>edgeTo</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>F</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td>-</td>
</tr>
</tbody>
</table>

Order of dfs calls: 0

Start by calling dfs(0).

Order of dfs returns: