
Best Case and Worst Case Height

Suppose we want to build a BST out of the numbers 1, 2, 3, 4, 5, 6, 7.

Give a sequence of add operations that result in (1) a spindly tree and (2) a bushy tree.

3

Q

4

2

6

1

3

5

7

4

2 6

1 3 5 7

Height: 6
Average Depth: 3

Height: 2
Average Depth: 1.43

Q1: Give a sequence of add operations that result in (1) a spindly tree and (2) a
bushy tree.

Good News and Bad News

Good news.

BSTs have great a runtime if we insert
keys randomly.

Θ(log N) per insertion.

Bad news.

We can’t always insert our keys in a
random order. Why?

6

Q

e

b g

o

n p

m

q

r

s

Q1: We can’t always insert our keys in a random order. Why?

Algorithm Design Process

8

Hypothesize. How do invariants affect
the behavior for each operation?

Identify. What strategies have we used
before? What examples can we apply?

Plan. Propose a new way from findings.

Analyze. Does the plan do the job? What
are potential problems with the plan?

Create. Implement the plan.

Evaluate. Check implemented plan.

ArrayList Invariant.

data is an array of items, never null.
The i-th item in the list is always
stored in data[i].

ArrayQueue Invariant.

data is an array of items, never null.
The i-th item in the list is always
stored in data[(start + i) mod length].

Programming, Problem Solving, and Self-Awareness: Effects of Explicit Guidance (Loksa et al./CHI ‘16)

Iterative Refinement

Let’s zoom in on the Data Structure and Implementation Details. We need to optimize
the worst case height of our binary search tree.

Iterative Refinement. Like the debugging process we learned earlier, information is
key and motivates how we improve our invariants. As with debugging, the solutions
are often very closely related to a particular framing of the problem. That’s why there
are lots of unsolved problems in theoretical CS. Oftentimes, we don’t have the right
understanding or perspective–hence why it’s so easy to get stuck.

?: How have we applied iterative refinement before?

Rewriting Invariants

Hypothesis. Worst-case height trees are spindly trees.

Identify.

Spindly tree: all nodes have either 0 children (leaf) or 1 child.

Bushy tree: all nodes have either 0 children (leaf) or 2 children.

Plan. Say we have a BST in which every node has either 0 or 2 children.

Analyze.

1. What is the worst case search time in this case?

2. What do worst case trees look like?

9

Q

4

2 6

1 3 5 7

4

2

6

1

3

5

7

Say we have a BST in which every node has either 0 or 2 children.

Q1: What is the worst case search time in this case?

Q2: What do worst case trees look like?

A Different Hypothesis

Hypothesis. Unbalanced growth leads to
worst-case height trees.

How does adding a new node affect the
height of a tree? Explain in terms of the
height of the left and right subtrees.

12

2

1 3

6

5 7

4

8

9

10

Q

Q1: How does adding a new node affect the height of a tree? Explain in terms of the
height of the left and right subtrees.

Overstuffing Leaves

Problem. New keys are added as leaves.

Avoid adding new leaves by overstuffing
existing leaves.

What’s the problem with this idea?

14

5

2 7

15

14 16 17

13

5

2 7

15

14 16 17 18

13

?: Does this suggestion increase the height of the tree?

?: What’s the problem with this idea?

Promoting Keys

Height is balanced but leaves are too full.

Set a limit L on number of keys, e.g. L=3.

If any node has more than L keys, give a
key to the parent, e.g. the left-middle key.

However, now 16 is to the right of 17.

Suggest a way to resolve this problem.

17

5

2 7

15

14 16 17 18 19

13

Promote
to parent

5

2 7

15 17

14 16 18 19

13

Q

Q1: Suggest a way to resolve this problem.

Adding More Keys

Suppose we add the keys 20 and 21.

If our cap is at most L=3 keys per node, draw the post-split tree.

19

Q

5

2 7

15 17

14 18 19 20 21

13

16

Q1: If our cap is at most L=3 keys per node, draw the post-split tree.

Overstuffing the Root Node

Draw the tree after the root is split.

23

Q

19 21155

13 17

19 21 22 23155

13 17

22 23155

13 17 21

19

22 23 24 25155

13 17 21

19 24 25155

13 17 21 23

19 22

?

Q1: Draw the tree after the root is split.

2-3, 2-3-4, and B-Trees

We chose limit L=3 keys in each node.
Formally, this is called a 2-3-4 Tree: each
non-leaf node can have 2, 3, or 4 children.

2-3 Tree. Choose L=2 keys. Each non-leaf
node can have 2 or 3 children.

B-Trees are the generalization of this idea
for any choice of L.

25

2-3-4 Tree

Max 3 keys and 4 non-null children per node.

s u w

r y ztn p

oe

b g

m q

v

2-3 Tree

Max 2 keys and 3 non-null children per node.

s u

r tn p

oe

b g

m q

v

B-Trees are popular in two contexts.
● Small L (L=2 or L=3). Used as a conceptually simple balanced search tree as

we saw today.
● Large L (in the thousands). Used in practice for databases and filesystems

with very large records.

Tree Insertion

Give an insertion order for the keys 1, 2, 3, 4, 5, 6, 7 that results in a max-height 2-3 Tree.

What about for a min-height 2-3 Tree?

27

Q

?: What is the least number of keys we can stuff into a 2-3 Tree node? The greatest
number of keys?

Q1: Give an insertion order for the keys 1, 2, 3, 4, 5, 6, 7 that results in a max-height
2-3 Tree.

Q2: Do the same for a min-height 2-3 Tree.

B-Tree Invariants

1. All leaves must be the same depth
from the root.

2. A non-leaf node with k keys must
have exactly k + 1 non-null children.

These invariants guarantee bushy trees.

The tree to the right is not a possible
B-Tree based on these invariants.

29

2 3 5 6 7

4

1

?: Why is the tree to the right impossible? Which invariants does it violate?

?: Based on our algorithm design principle, explain to yourself why these invariants
must be true.

