
Comprehending. Understanding the
implementation details of a program.

Modeling. Counting the number of steps
in terms of N, the size of the input.

Case Analysis. How certain conditions
affect the program execution.

Asymptotic Analysis. Describing what
happens for very large N, as N→∞.

Formalizing. Summarizing the final result
in precise English or math notation.

Runtime Analysis Process

3

boolean dup1(int[] A)

Consider every pair

Array contains a
duplicate at front

Array contains no
duplicate items

Constant time Quadratic time

Θ(1) Θ(N2)

Overall Asymptotic Runtime Bound

Worst caseBest case

The reading described the implementation details for dup1 and dup2
(Comprehension) and introduced the idea of counting steps (Modeling). In this
lecture, we will go in-depth on modeling and formalizing.

?: Where did case analysis come up in the reading?

Asymptotic Analysis

What happens for very large N, as N→∞.

Simulating billions of particles.

Social network with billions of users.

Logging billions of transactions.

Encoding billions of bytes of video data.

Linear-time algorithms scale better than
quadratic-time algorithms (parabolas).

4

From this point forward, we’ll almost always be working in the mode of asymptotic
analysis: considering the behavior of programs as N grows very large.

?: How can we characterize the range of step counts that we saw in dup1 and dup2?

5

Orders of Growth
Algorithm Design (Jon Kleinberg, Éva Tardos/Pearson Education)

?: Why might we choose to focus on very large N rather than small N?

?: How do multiplicative constants, e.g. 100N or N2 / 2, affect the order of growth of
the runtime of different algorithms?

Asymptotic Analysis and Case Analysis

6

Operation dup1: Quadratic/Parabolic dup2: Linear

i = 0 1 1

less-than (<) 2 to (N2 + 3N + 2) / 2 0 to N

increment (+= 1) 0 to (N2 + N) / 2 0 to N - 1

equality (==) 1 to (N2 - N) / 2 1 to N - 1

array accesses 2 to N2 - N 2 to 2N - 2

For a very large array with billions of elements (i.e. asymptotic analysis), is it possible for
dup1 to execute only 2 less-than (<) operations?

Q

public static boolean dup1(int[] A) {

 for (int i = 0; i < A.length; i += 1) {

 for (int j = i + 1; j < A.length; j += 1) {

 if (A[i] == A[j]) {

 return true;

 }

 }

 }

 return false;

}

Q1: For a very large array with billions of elements (i.e. asymptotic analysis), is it
possible for dup1 to execute only 2 less-than (<) operations?

?: What does the runtime for dup1 vs. dup2 look like if we only consider the best case
asymptotic analysis? How does that result compare to the worst case asymptotic
analysis?

Identifying Orders of Growth

Consider the algorithm step counts below.

What do you expect will be the order of growth of the runtime for the algorithm?

A. N [linear]

B. N2 [quadratic]

C. N3 [cubic]

D. N6 [sextic]

11

Q

Operation Count

less-than (<) 100N2 + 3N

greater-than (>) 2N3 + 1

and (&&) 5,000

Q1: What do you expect will be the order of growth of the runtime for the algorithm? In
other words, if we plotted total runtime vs. N, which curve would we expect?

Simplification 3: Eliminate Lower-Order Terms

Ignore lower-order terms.

14

Operation Worst Case: dup1

increment (+= 1) (N2 + N) / 2

public static boolean dup1(int[] A) {

 for (int i = 0; i < A.length; i += 1) {

 for (int j = i + 1; j < A.length; j += 1) {

 if (A[i] == A[j]) {

 return true;

 }

 }

 }

 return false;

}

?: Why can we ignore lower-order terms?

Your Turn: Worst Case Order of Growth for dup2

1. Only consider the worst case.

2. Pick a representative operation (cost model).

3. Ignore lower order terms.

4. Ignore multiplicative constants.

17

Operation dup2

i = 0 1

less-than (<) 0 to N

increment (+= 1) 0 to N - 1

equality (==) 1 to N - 1

array accesses 2 to 2N - 2

Order of growth

Operation Worst Case Growth

array accesses N

Operation Worst Case Growth

“The worst case order of growth of
the runtime for dup2 is …”

Q

Q1: Determine the worst case order of growth for dup2.

Q2: Which operations are appropriate cost models? How do you know?

Simplified Modeling Process

Rather than building the entire table, we can instead:

1. Choose a representative operation to count (cost model).

2. Figure out the order of growth for the count of the representative operation by either:

• Making an exact count and then discarding the unnecessary pieces.

• After lots of practice, using inspection to determine order of growth.

Let’s redo our analysis of dup1 with this new process.

This time, we’ll show all our work.

18

By using our simplifications from the outset, we can avoid building the table at all!

Worst Case Order of Growth: Exact Count of == Operations
19

int N = A.length; // N == 6

for (int i = 0; i < N; i += 1)

 for (int j = i + 1; j < N; j += 1)

 if (A[i] == A[j])

 return true;

return false;

== == == == ==

== == == ==

== == ==

== ==

==

0

1

2

3

4

5

0 1 2 3 4 5

i

j

“The worst case order of
growth of the runtime
for dup1 is N2.”

Worst Case Order of Growth: Geometric Argument
20

int N = A.length; // N == 6

for (int i = 0; i < N; i += 1)

 for (int j = i + 1; j < N; j += 1)

 if (A[i] == A[j])

 return true;

return false;

== == == == ==

== == == ==

== == ==

== ==

==

0

1

2

3

4

5

0 1 2 3 4 5

i

j

“The worst case order of
growth of the runtime
for dup1 is N2.”

Area of right triangle of side length N - 1.

Order of growth of area is N2.

Order of Growth Exercise

Informally, what is the shape of each function for very large N?

In other words, what is the order of growth of each function?

23

Q

Function Order of Growth

N3 + 3N4 N4

(1 / N) + N3 N3

(1 / N) + 5 1

NeN + N NeN

40 sin(N) + 4N2 N2

Function Order of Growth

N3 + 3N4

(1 / N) + N3

(1 / N) + 5

NeN + N

40 sin(N) + 4N2

Q1: Informally, what is the shape of each function for very large N? In other words,
what is the order of growth of each function?

Big-Theta Definition

means there exist positive constants k1
and k2 such that

for all values of N greater than some N0.

25

“Very large N”

?: What is a value that we can choose for N0 according to the plot on the right?

Big-Theta Challenge

Find a simple f(N) and corresponding k1 and k2.

26

Q Demo

means there exist positive constants k1
and k2 such that

for all values of N greater than some N0.

Q1: Find a simple f(N) and corresponding k1 and k2.

Big-O Definition

means there exists a positive constant k2
such that

for all values of N greater than some N0.

28

“Very large N”

?: Why can we say that 40 sin(N) + 4N2 is in O(N4)? Explain in terms of the formal
definition of Big-O.

?: Why is it incorrect to say that 40 sin(N) + 4N2 is in Θ(N4)? Explain in terms of the
formal definition of Big-Theta.

Big-Omega Definition

means there exists a positive constant k1
such that

for all values of N greater than some N0.

29

“Very large N”

Likewise, we have a Big-Omega definition for the other half of the inequality.

?: Describe 40 sin(N) + 4N2 ∈ Ω(N) in your own words using the plot on the right.

?: Does Θ(f(N)) imply O(f(N)) and Ω(f(N))? Does O(f(N)) and Ω(f(N)) imply Θ(f(N))?

Overall Asymptotic Runtime Bound for dup1

Give an overall asymptotic runtime bound for R as a combination of Θ, O, and/or Ω notation.
Take into account both the best and the worst case runtimes (Rbest and Rworst).

32

Q Demo

Q1: Give an overall asymptotic runtime bound for R as a combination of Θ, O, and/or
Ω notation. Take into account both the best and the worst case runtimes (Rbest and
Rworst).

