
Implementer’s Design Decision Hierarchy

3

ListAbstract Data Type

Which ADT is the best fit?

Data Structure

Which data structure offers the best 
performance for our input/workload?

Implementation Details

How do we maintain invariants?

Resizable Array Linked Nodes

data is an array of items, never null. The i-th 
item in the list is always stored in data[i].

?: How do we determine whether one data structure is faster than another? Does it 
depend on the implementation details?

?: How do invariants relate to data structures?

Which List implementation is faster for removeFront?

4



Big-O Runtime Analysis

What does it mean for a data structure to 
be slow or fast?

Big-O runtime analysis: count how many 
steps a program takes to execute an 
input of size N.

Suppose our list has N items.

A method that takes a constant number 
of steps (e.g. 23) is in O(1).

A method that takes a linear number of 
steps (e.g. 4N + 3) is in O(N).

5

N
um

be
r o

f s
te

ps
 (r

un
tim

e)

Size of input (N)

O(N)

O(1)

?: How does constant or linear relate to analyzing runtime “with respect to big 
inputs”?

?: What are the big-O runtimes for ArrayList and LinkedList removeFront?

?: Can we say that an ADT is slower or faster than another ADT?

ArrayList vs. LinkedList

1. Which List implementation should we use to store a list of songs in a playlist?

2. Which List implementation should we use to store the history of a bank customer’s 
transactions?

3. Which List implementation should we use to store the order of students waiting to 
speak to a TA at a tutoring center?

6

Q

Time needed to access the i-th item from a list of N items.
- ArrayList: O(1)
- LinkedList: O(N)

Time needed to insert an item at position i in a list of N items.
- ArrayList: O(N)
- LinkedList: O(N)

?: Why are these runtimes what they are?

Q1: Which List implementation should we use to store a list of songs in a playlist?

Q2: Which List implementation should we use to store the history of a bank 
customer’s transactions?

Q3: Which List implementation should we use to store the order of students waiting to 
speak to a TA at a tutoring center?



Which Stack implementation is faster overall?

7

Recall that the Stack ADT specifies two important methods:

- push(Item item): Puts the item on the top of the stack.
- Item pop(): Removes and returns the top item of the stack.

Assume for the resizable array that we use the addLast and removeLast methods 
from ArrayList. Assume for linked nodes that we use the addFirst and removeFirst 
methods from LinkedList, and we have a reference to the front of the LinkedList.

ArrayStack

8

Item[] data

int size

push – resize data array if necessary; 
assign data[size] = item; increment size

pop – return data[size]; decrement size

State

Behavior

0 1 2 3
push(3)

push(4)

pop()

push(5)

push

pop

33 43 43 5

push – O(1) if not resizing;
O(N) if resizing

pop – O(1)

Runtime

0size 1212

?: How do the Stack ADT methods compare to List ADT methods?

?: How do the implementations for ArrayList methods differ from ArrayStack methods?



LinkedStack

9

Node top

int size

push – create a new node linked to top; 
update top to new node; increment size

pop – return top item; update top; 
decrement size

State

Behavior

push(3)

push(4)

pop()

push

pop

push – O(1) always

pop – O(1)

Runtime

size

top

0size

top

3

1size

top

34

2size

top

3

1

?: If the push and pop operations of LinkedStack is always at least as good or better 
than ArrayStack, would we ever want to use ArrayStack?

Hiding Program Complexity

Contract: Assuming they agree to the 
ADT’s possible values and operations, the 
client and the implementer can improve 
their programs at the same time.

Invariants: A checklist of assumptions 
the implementer needs to maintain every 
time they add a behavior to a data 
structure.

If the List ADT does everything the Stack 
and Queue ADTs can do, why use Stack or 
Queue instead of List?

11

Q

Implementer

Client

ADT

?: How do invariants affect the implementation of ArrayList and ArrayStack?

Q1: If the List ADT does everything the Stack and Queue ADTs can do, why use Stack 
or Queue instead of List?



ArrayQueue: Design 1

12

0 1 2 3
add

remove

Same design as ArrayStack: borrow 
ArrayList’s addLast and removeFront.

It’s basically just an ArrayList.

Reconsidering Data Structure Invariants

ArrayQueue (Design 1) is basically just an ArrayList.

Recall the representation invariant for the underlying data array in an ArrayList.

data is an array of items, never null.
The i-th item in the list is always stored in data[i].

1. How does maintaining this invariant affect the runtimes for add and remove?

2. Propose an invariant that could result in faster runtimes for add and remove.

14

Q

Q1: How does this invariant relate to the runtimes for add and remove?

Q2: Propose an invariant that could result in faster runtimes for add and remove.



The i-th item does not need to be data[i] 
so the front of the queue does not need 
to be the front of the array!

ArrayQueue: Design 2

15

0 1 2 3add(3)

add(4)

remove()

add(5)

add(6)

add(7)

add

remove

33 43 43 4 5

0size 1212

A

front

back

0

012

1

3

3

3 4 5 6

01 Circular

7 4 5 6

4

Removing items 
increments front

front represents the index of the front of the queue (except when the queue is empty) 
while back represents the index for the next item.

?: What’s the runtime for ArrayQueue (Design 2) add and remove?

?: Is it necessary to maintain an integer index for remembering the back of the array?

?: We found a faster way to implement ArrayQueue. Is it possible to take these 
invariants and use them to implement a faster ArrayList?

1

1The i-th item does not need to be data[i] 
so the front of the queue does not need 
to be the front of the array!

Give an invariant that describes this 
behavior in your own words.

ArrayQueue: Design 2

16

0 1 2 3
add

remove size

Q

front

back Circular

Removing items 
increments front

7 4 5 6

4

front represents the index of the front of the queue (except when the queue is empty) 
while back represents the index for the next item.

Q1: Give an invariant that describes this behavior in your own words.



Give an invariant that describes ArrayQueue (Design 2) in your 
own words.

17

LinkedQueue: Design 1

18

add

remove

back

34

Same design as LinkedStack: borrow 
LinkedList’s addLast and removeFront.

1. Which method has a worse runtime: 
add or remove?

2. How could we improve the runtime?

Q

Q1: Which method has a worse runtime: add or remove?

Q2: How would you improve the runtime?

?: How does this change your visualization of the data structure?



LinkedQueue: Design 2

19

add

remove

back

34Add a front pointer.

front

A

?: What are other possible designs for LinkedQueue? What set of invariants can 
result in a slower LinkedQueue implementation?

Implementer’s Design Decision Hierarchy

20

ListAbstract Data Type

Which ADT is the best fit?

Data Structure

Which data structure offers the best 
performance for our input/workload?

Implementation Details

How do we maintain invariants?

Resizable Array Linked Nodes

data is an array of items, never null. The i-th 
item in the list is always stored in data[i].

Today, we studied the ADT implementer’s view of the Design Decision Hierarchy. A 
recurring theme in computer science is that problem representations 
(implementation details) reflect problem solutions (data structures).

One neat observation: by simplifying the ADT interface, we gave the implementer 
more control over how they implemented their data structures. The more complex the 
ADT, the more restrictive the invariants, which means the implementer might not be 
able to make as many runtime optimizations.

?: We’ll later look at the ADT client’s perspective. How does the client determine 
which ADT is the best fit? To what extent does the client need to worry about ADT and 
data structure complexity?


