
Section 06: Solutions

1. k-d Trees

(a) Given the points shown in the grid to the right, draw
a perfectly balanced k-d tree in the box below. For
this tree, first split on the x dimension. The resulting
tree should be complete with height 2. Then, draw
the corresponding splitting planes on the grid to the
right.

(5,6)

(1,5)

(7,3)

(2,2)

(4,9)

(9,1)

(8,7)

Solution:

There are several different ways to create a k-d tree and we will explore the two most common approaches.
The first approach will be to create a perfectly balanced tree given all of the points at the start. Given the
full set of points what we want to have is that each node should partition the remaining points into two
equal halves which will be passed down to the node’s left and right children. In doing this we need to
adhere to the invariants of the k-d tree. For example if we are splitting on x the points passed into the left
child should have x-values less than the median point’s x-value and the points passed into the right child
should have the x-values greater than the median point’s x-value. As we have already sorted the list we
can take the sublist of the points before the median and pass them along to the left subtree and then take
the points after the median and pass them along to the right subtree.

In order to implement this at each node we should sort the points based off of their x or y coordinates
depending on if we are splitting on x or y. After we have done this we will select the median point to be
the current point and then we will create left and right subtrees based off of the sublists of points split by
the median.

For our case of points we can see that if we first split on x we will sort the points on x yielding (1,5), (2,2),
(4,9), (5,6), (7,3), (8,7), (9,1). The median of this list is (5,6) so this will become our trees root. We will
make recursive calls passing in the list of points (1,5), (2,2), (4,9) and (7,3), (8,7), (9,1) to the left and
right subtrees. This process will repeat until we are left with the following tree which will be perfectly
balanced.
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(5, 6)

(1, 5) (7, 3)

(2, 2) (4, 9) (9, 1) (8, 7)

We can also visualize the k-d tree points in space by drawing on the splitting planes as is shown below.

(5,6)

(1,5)

(7,3)

(2,2)

(4,9)

(9,1)

(8,7)

The secondary approach to constructing a k-d tree is to simply add the points one at a time. The trade
off here is that the code for this method will likely be simpler, but now we are not guaranteed to have
a perfectly balanced tree. Thinking back to BSTs there were cases where if you inserted elements in a
certain order the resulting BST would end up being spindly and the same thing can happen for k-d trees.
If we want to improve our runtime compared to the naive solution, we want to have at least a roughly
balanced tree. One thing that we can do to increase the likelihood of creating a roughly balanced tree
is to randomize the order of insertion. This again will not create a perfectly balanced tree as before, but
in expectation the tree should be roughly balanced. In doing this we expect to come close to a perfectly
balanced tree, but with much simpler code.

(b) Insert the point (6, 2) into the k-d tree you drew below. Then, add that point to the grid and draw the
corresponding splitting plane.

Solution:

Now we will walk through the insertion of the single point (6,2) into our exising k-d tree from (a). We
begin at the root which corresponds to the point (5,6). We are splitting on x at this top node and the x
value of the point to be inserted, 6, is greater than that of the root’s x-value, 5, so we proceed to the right.

Next the current point corresponds to the point (7,3). We are splitting on y at this node and the y value
of the point to be inserted, 2, is less than that of the current node’s y-value, 3, so we proceed to the left.

Now the current point corresponds to the point (9,1). We are splitting on x at this node and the x value
of the point to be inserted, 6, is less than that of the current node’s x-value, 9, so we proceed to the left.
This corresponds to a null child, so we will insert the new point at this location in our tree.

2



Below we can see updated diagrams corresponding to the two views of our k-d tree.

(5, 6)

(1, 5) (7, 3)

(2, 2) (4, 9) (9, 1) (8, 7)

(6, 2)

(5,6)

(1,5)

(7,3)

(2,2)

(4,9)

(9,1)

(8,7)

(6,2)

p

(c) Find the nearest point to (3, 6) in your k-d tree. Mark each branch that is not visited (pruned in execution of
nearest) with an X through the branch.
Solution:

K-d Tree Nearest Algorithm:
Given a query point p we will do the following starting at the root node. We will not recurse on all nodes
in the tree, as we will likely be able to prune large portions of the tree. One way to structure this is to
have the call to nearest call a helper function that takes in 3 arguments: n the node in the tree that we
are currently visiting, p the query point, and globalBest the closest node we have seen so far. To start we
will make the call nearestHelper(root, p, root).

(i) We check if the current node, nwe are at in the tree is closer to p than the globalBest that was passed
in. If it is indeed closer update globalBest to be n.

(ii) Next we must recurse in either direction of the splitting plane in order to determine if there is a closer
node to the query point in that half of the tree (or subtree). As we know where the query point lies
with respect to the splitting plane we will first recurse in the direction of the query point (intuitively
we expect the closest point to be in the direction of the query point although this is not always the
case). This side of the tree we can think of as the ”good side” For example if n represents the point
(3,4), we are splitting on x, and the query point p is (2,5) then we will first recurse on the left child
of n as 2 < 3. This recursive call will either return the current value of globalBest if no closer node
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was discovered or it will return the new closest point which globalBest should be updated to.

(iii) Now we need to consider if the other side of the tree (the ”bad side”) needs to be checked. We only
want to check this side of the tree if it is possible that a closer point than the globalBest could exist
on that side of the tree. If it is impossible for such a point to lie on that side of the tree then we will
prune that branch. For this we will do the following:

(i) We can imagine a circle which is centered at the query point, p, with the same radius as the
distance from the p to the globalBest. This circle represents the region in cartesian space where
it is possible that a closer point than globalBest could lie if it does exist. To see if we need to
check the other side of the tree we can see if this circle intersects the splitting plane such that
some portion of the circle lies on either side of the splitting plane. (Note in 2-dimensions we
can use circles and our splitting planes will be lines, but in higher dimensions the circles will be
replaced with hyperspheres and the splitting planes will be hyperplanes).

To determine if the circle intersects the splitting plane, we can reduce this to a slightly simpler
calculation. We notice that if a point did exist in the other side of the splitting plane, the closest
that it could exist to the query point would be perpendicular to the splitting plane in line with
the query point. For example suppose the query point is (5,5) and the current node contains the
point (4, 3) where we split on x. Space is split into points with x > 4 and x < 4. For this we
would first search the tree corresponding to points with x > 4. If the current best found when
searching this half of the tree is (5,7). The closest point to the query point that is on the other
side of the splitting plane would be (4,5). Now we can see that the current best is distance 2
away from the query point, but there are possible points on the other side of the splitting plane
that could be distance 1 away, so we must check the other side of the plane.

(ii) If we did end up recursing on the other side of the tree (or subtree), similarly this will either
return the current value of globalBest if no closer node was discovered or it will return the new
closest point which globalBest should be updated to.

(iv) Return globalBest.

Solution:

Walkthrough of Specific Call to Nearest
We begin at the root of the tree, so n corresponds to the point (5,6), additionally globalBest will corre-
spond to (5,6). The query point p will be (3,6). In this case n is the same as globalBest so we do not
need to update globalBest. Next n splits on x, so we compare the x-values of n and p. We see that the
good side of the tree will be the left side (corresponding to x-values less than 5) as 3 < 5, so we will first
recurse on the left side.

Now n corresponds to the point (1,5), and p and globalBest remain unchanged. We see that n is distance
2.236 away from p which is worse than globalBest which is distance 2 away, so we do not need to update
globalBest. Next n splits on y, so we compare the y-values of n and p. We see that the good side of the
tree will be the right side (corresponding to y-values greater than 5) as 6 > 5, so we will first recurse on
the right side.

Now n corresponds to the point (4,9), and p and globalBest remain unchanged. We see that n is distance
3.162 away from p which is worse than globalBest which is distance 2 away, so we do not need to update
globalBest. Next n splits on x, so we compare the x-values of n and p. We see that the good side of the
tree will be the left side (corresponding to x-values less than 4) as 3 < 4, so we will first recurse on the
left side.

Now n corresponds to null as there is no left child of the node corresponding to (4, 9). In this case we
simply return globalBest which is (5,6).

After returning from this recursive call we are now once again at the node where n corresponds to the
point (4,9). Now we need to make a decision of whether or not we should visit the “bad side” of the tree.
We can begin by visualizing the circle mentioned above.
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(5,6)

(1,5)

(7,3)

(2,2)

(4,9)

(9,1)

(8,7)

(6,2)

p

If a point exists that is closer to p than globalBest then it must be less than distance 2 away from p. The
circle corresponds to the region which would contain these points if they exist in our tree. What we can
see is that this circle overlaps the splitting plane (the line corresponding to the x-value 4). This means
that it is possible that a point does exist on the other side of the splitting plane that is closer to p than
globalBest, so we must recurse on the “bad side.”

In code however the notion of creating a circle can be simplified to the following. We can consider the
closest point to p on the other side of the splitting plane. This will correspond to the point that lies at the
intersection of the splitting plane corresponding to n and the line perpendicular from the splitting plane
that passes through the query point p. In this case we can see that this closest point that could lie on the
other side of the splititng plane defined by the point (4,9) split on x would be the point (4,6). Now we can
compare the distance from globalBest to p to the distance from this hypothetical new best point to p. If
the distance from globalBest to p is greater then we must check the “bad side,” otherwise we can prune.

(5,6)

(1,5)

(7,3)

(2,2)

(4,9)

(9,1)

(8,7)

(6,2)

p

Again we are considering the case where n is (4,9), p is (3,6), and the globalBest is (5,6). The green
line above corresponds to the shortest distance to the splitting plane which would be of distance 1. This
is less than 2, the distance from p to globalBest. So we must visit the “bad side”.

When we recurse on the bad side n corresponds to null as there is no right child of the node corresponding
to (4, 9). In this case we simply return globalBest which is (5,6). Now that we have visited all of the
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children of (4,9) we can return the globalBest which will still be (5,6).

Now we have returned back to where n corresponds to the point (1,5). We have visited the “good side”
where we did not find anything better than the globalBest, so globalBest is not updated. Next we need
to consider if we need to explore the “bad side” of n. Once again we can visualize this using the same rule
as above.

(5,6)

(1,5)

(7,3)

(2,2)

(4,9)

(9,1)

(8,7)

(6,2)

p

We see that as the circle does overlap the splitting plan we will need to visit the “bad side” of the tree.
Again we can also look at the closest hypothetical point to p on the other side of the splitting plane. This
again corresponds to the green line above, and we can see that this distance is again 1, compared to the
distance of 2 between globalBest and p, so we again we must explore the other side of the tree.

Now n corresponds to the point (2,2) We see that n is distance 4.123 away from p which is worse than
globalBest which is distance 2 away, so we do not need to update globalBest. Next n splits on x, so we
compare the x-values of n and p. We see that the “good side” of the tree will be the right side (corresponding
to x-values greater than 2) as 3 > 2, so we will first recurse on the left side.

After recursing, n corresponds to null as there is no right child of the node corresponding to (2, 2). In this
case we simply return globalBest which is still (5,6).

Next we have to consider if we need to check the “bad side” of n. In this case the check is a bit iteresting.
What we can see is the points corresponding to the left child of n (which again is (2,2)) will be points with
x-values less than 2 and y-values less than 5. When we consider doing the same perpendicular closest
point we can see that this will correspond to the point (2,6) which is actually not contained within this
region. Essentially the rule we introduced above gives a weaker condition of pruning, as the closest actual
point to p that exists in this region of points would be the upper right hand corner of this region, namely
(2,5). Since the closest actual point would be (2,5), ideally we should be comparing that distance from p

to this point (2,5). We can see this visualized below.
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(5,6)

(1,5)

(7,3)

(2,2)

(4,9)

(9,1)

(8,7)

(6,2)

p

In the above the green line corresponds to the distance rule we have been using, whereas the orange line
corresponds to the distance that would be used in the optimal pruning case. From this what we can see
is that the perpendicular distance will always be less than this diagonal distance, so by doing the simpler
pruning check our algorithm is still correct although it might visit slightly more nodes in our tree than
necessary. For implementing this code, it will be much simpler to just use the simpler perpendicular rule.
As such we will choose to ignore this slightly more optimal pruning rule, but it is important to know that
it does exist.

Regardless we see that we do need to check the “bad side” so we recurse on the left child of the node
corresponding to (2,2). In this case now n will again be null so we return the current best, (5,6).

At this point we can now return to the call where n is (1,5). We have visited both the “good side” and
the “bad side” so we can return the globalBest but this has not been updated so we will return the node
corresponding to (5,6).

Finally we return to the call where n is the root, (5,6). Once more we need to check if we need to explore
the other side of the tree. In this case we can see that the circle is tangent to the splitting plane, or
equivalently the best possible point perpendicular from p is distance 2 away from p. As we already have
the globalBest storing a point that is distance 2 away from p then we do not need to explore the other
side of the tree, as the best we can do is equivalent to what we already have. Here we prune the entire
right half of the tree and return globalBest which corresponds to the point (5,6).

Below is the tree that shows which nodes were explored and which we were able to prune where the
dashed lines and nodes corresponds to what we pruned.

(5, 6)

(1, 5) (7, 3)

(2, 2) (4, 9) (9, 1) (8, 7)

(6, 2)
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2. Graph traversal

(a) Consider the following graph. Suppose we want to traverse it, starting at node A.

B

A

FH

G
C

D

E

If we traverse this using breadth-first search, what are two possible orderings of the nodes we visit? What if
we use depth-first search?

Solution:

Here are two possible orderings for BFS:

• A, G, F, B, C, H, D, E

• A, C, B, F, G, D, H, E

Here are two possible orderings for DFS:

• A, G, H, F, C, D, E, B

• A, B, C, E, D, F, H, G

(b) Same question, but on this graph:

A

B

D E

C

F G

Solution:

Here are two possible orderings for BFS:

• A, B, C, D, E, F, G

• A, C, B, F, G, D, E

Here are two possible orderings for DFS:

• A, B, D, E, C, F, G

• A, C, G, F, B, E, D

3. Implementing graph searches

(a) Come upwith pseudocode to implement breadth-first search on a graph, given a starting node and an adjacency
list representation of the graph. Is your method recursive or not? What data structures do you use?

Solution:

See the pseudocode given in lecture.
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(b) Come up with pseudocode to implement depth-first search on a graph, given a starting node and an adjacency
list representation of the graph. Is your method recursive or not? What data structures do you use?

Solution:

See the pseudocode given in lecture.

4. Design Problem: Pathfinding in mazes

Suppose we are trying to design a maze within a 2d top-down video-game. The world is represented as a grid,
where each tile is either an impassable wall, an open space a player can pass through, or a wormhole. On each turn,
the player may move one space on the grid to any adjacent open tile. If the player is standing on a wormhole, they
can instead use their turn to teleport themselves to the other end of the wormhole, which is located somewhere else
on the map.

Now, suppose the there are several coins scattered throughout the map. Your goal is to design an algorithm that
finds a path between the player and some coin in the fewest number of turns possible.

Describe how you would represent this scenario as a graph (what are the vertices and edges? Is this a weighted or
unwighted graph? Directed or undirected?). Then, describe how you would implement an algorithm to complete
this task.

Solution:

We can represent this as an undirected, unweighted graph where each tile is a vertex. Edges connect tiles we
can travel between. When we have a wormhole, we add an extra edge connecting that wormhole tile to the
corresponding end of the wormhole.

Because it takes only one turn to travel to each adjacent tile, there is actually no need to store edge weights: it
costs an equal amount to move to the next vertex.

All paths are bidirectional, so we can also use an undirected graph. (If there are paths or wormholes that are
one-way, we can switch to using a directed graph).

To find the shortest path, we can run BFS starting with the player and stop the moment we hit a coin.
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