For answers that involve filling-in a \bigcirc, fill-in the shape completely: \bigcirc.

1. Suppose we create a new sorting algorithm called `PartitionHybridSort(input, lo, hi, substsort)`, where `input` is an array of integers, `lo` is the lowest index in the array to be sorted, `hi` is the highest index in the array to be sorted, and `substsort` is the sorting algorithm to use in step 3:

 1. If `hi − lo ≤ 1`, return.
 2. Partition around `input[lo]`, i.e. the leftmost item of the current subproblem.
 3. Use `substsort` to sort the left and right subproblems.

Give the **worst-case runtime** for `PartitionHybridSort` using different `substsort` algorithms in terms of `N`, the size of the `input`.

`PartitionHybridSort` uses the partitioning idea from quicksort but changes what happens after partitioning the left and right subproblems. In the worst-case, partitioning around the `lo` item leaves us with `N − 1` items in the array. Sorting `N − 1` items is not asymptotically different from sorting `N` items.

(a) `PartitionHybridSort(input, 0, N, InsertionSort)`
Worst-case: Θ(N^2)

(b) `PartitionHybridSort(input, 0, N, MergeSort)`
Worst-case: Θ($N \log N$)

(c) `PartitionHybridSort(input, 0, N, LSDRadixSort)`
Worst-case: Θ(N)

(d) `PartitionHybridSort(input, 0, N, PartitionHybridSort)`
Worst-case: Θ(N^2)

`PartitionHybridSort` as the `substsort` results in naïve quicksort.

2. Suppose we replace the counting sort used in LSD radix sort with merge sort, resulting in a new radix-based sorting algorithm called `LSD Radix Merge Sort`. The merge sort used as a subsort by `LSD Radix Merge Sort` is exactly like regular merge sort, except that its merge operation compares only one digit of an input to decide which is larger. For example, the merge operation would ordinarily consider 361 to be less than 410, but if we’re sorting on the final digit, it will consider 361 to be larger than 430 since 1 > 0.

Just like regular LSD radix sort, `LSD Radix Merge Sort` would sort by the last digit, then second to last digit, and so forth. We can define `LSD Radix QuickSort` in a similar way. Assume that `LSD Radix QuickSort` always picks the leftmost pivot and uses in-place Hoare partitioning.

Give the **worst-case runtime** of both sorting algorithms in terms of `N` and `W`, where `W` is the number of digits in each key. For simplicity, assume all keys have the same number of digits. Don’t worry about the alphabet size `R`. Also state whether or not they always return a correct sort and explain.

LSD radix sort needs a stable subsorting algorithm. When sorting items on the ten’s place, for example, we don’t want to mix-up the sorting already completed for the one’s place. Since merge sort is stable, `LSDRadixMergeSort` is correct. Since quicksort is unstable, `LSDRadixQuickSort` is not correct.

LSD radix sort involves running `W` iterations of the subsorting algorithm. Imagine a for-loop across all `W` digit places, where each loop calls either merge sort or quicksort.
(a) LSDRadixMergeSort

Correct? ● Yes ○ No

Explanation: Merge sort is stable.

(b) LSDRadixQuickSort

Correct? ● Yes ○ No

Explanation: Quicksort is unstable.