Suppose you work on a droid assembly line. You have a supposedly sorted array of N Droid objects that implement Comparable. However, when looking through your array, you realize these aren’t the droids you’re looking for! The machine malfunctioned and made at most k mistakes: there are no more than k inversions, where we define an inversion as a pair of droids that is not in the right order.

Hint: The array $[0 \ 1 \ 1 \ 2 \ 3 \ 4 \ 8 \ 6 \ 9 \ 5 \ 7]$ has 6 inversions: $8–6$, $8–5$, $8–7$, $6–5$, $9–5$, $9–7$.

For the questions below, give the typical or expected runtime. For example, for quicksort, assume that the pivot choices result in $O(\log N)$ recursive depth.

1. For each k, give the most efficient sorting algorithm and its simplified asymptotic runtime.

 (a) $k \in O(N)$
 Algorithm: ____________________________
 Runtime: $\Theta(\)$

 (b) $k \in O(N^2)$
 Algorithm: ____________________________
 Runtime: $\Theta(\)$

 (c) $k \in O(\log N)$
 Algorithm: ____________________________
 Runtime: $\Theta(\)$

2. Two weeks later, you’re given another batch of droids that are supposed to be sorted on a 32-bit int ID, an instance variable of Droid. The machine hasn’t been fixed and again made at most k mistakes. For each k, give the most efficient sorting algorithm and its simplified asymptotic runtime.

 (a) $k \in O(N^2)$
 Algorithm: ____________________________
 Runtime: $\Theta(\)$

 (b) $k \leq 5$
 Algorithm: ____________________________
 Runtime: $\Theta(\)$