CSE 373: P vs NP; reductions

Michael Lee
Wednesday, Mar 7, 2018

Warmup

Remind your neighbor:

» What is a decision-problem?

» What is P, EXP, and NP?

Warmup
Remind your neighbor:
» What is a decision-problem?

A yes-or-no question

» What is P, EXP, and NP?

Warmup

Remind your neighbor:

» What is a decision-problem?
A yes-or-no question

» What is P, EXP, and NP?

1. P is the set of all decision problems that can be solved in
worst-case polynomial time

Warmup

Remind your neighbor:

» What is a decision-problem?
A yes-or-no question
» What is P, EXP, and NP?

1. P is the set of all decision problems that can be solved in

worst-case polynomial time
2. EXP is the set of all decision problems that can be solved in

worst-case exponential time

Warmup

Remind your neighbor:

» What is a decision-problem?
A yes-or-no question
» What is P, EXP, and NP?

1. P is the set of all decision problems that can be solved in

worst-case polynomial time
2. EXP is the set of all decision problems that can be solved in

worst-case exponential time
3. NP is the set of all decision problems where we can verify all

“yes" answers in worst-case polynomial time

Final logistics:

» Thursday, March 15
» 2:30 to 4:20
» Gowen 301

Final logistics:

» Thursday, March 15
> 2:30 to 4:20
» Gowen 301

If you need to take the final at a different date:

» If you've already sent me an email, no action needed

» Otherwise, send me an email by the end of today

Final logistics:

» Thursday, March 15
» 2:30 to 4:20
» Gowen 301

If you need to take the final at a different date:

» If you've already sent me an email, no action needed

» Otherwise, send me an email by the end of today
Review sessions:

» Monday, Mar 12: EEB 125, 4:30 to 6:30
» Tuesday, Mar 13: EEB 105, 4:30 to 6:30

The final will be cumulative, but skewed towards new material.

Post-midterm topics:

1. Heaps

The final will be cumulative, but skewed towards new material.

Post-midterm topics:

1. Heaps
2. Sorting, basic divide-and-conquer

The final will be cumulative, but skewed towards new material.

Post-midterm topics:

1. Heaps
2. Sorting, basic divide-and-conquer
3. The tree method and the master method

The final will be cumulative, but skewed towards new material.

Post-midterm topics:

1. Heaps

2. Sorting, basic divide-and-conquer

3. The tree method and the master method
4. Graphs

The final will be cumulative, but skewed towards new material.

Post-midterm topics:

. Heaps
. Sorting, basic divide-and-conquer
. The tree method and the master method

AW NN =

. Graphs
» Definitions
» Representation
» Traversal
» Dijkstra's
» Topological sort
» MSTs (Prim, Kruskal, disjoint sets)

The final will be cumulative, but skewed towards new material.

Post-midterm topics:

1. Heaps
2. Sorting, basic divide-and-conquer
3. The tree method and the master method
4. Graphs

» Definitions

» Representation

» Traversal

» Dijkstra's

» Topological sort

» MSTs (Prim, Kruskal, disjoint sets)
5. P and NP

The final will be cumulative, but skewed towards new material.

Pre-midterm topics:

The final will be cumulative, but skewed towards new material.

Pre-midterm topics:

1. Asymptotic analysis, modeling code as equations

The final will be cumulative, but skewed towards new material.

Pre-midterm topics:

1. Asymptotic analysis, modeling code as equations

2. Anything related to dictionaries

The final will be cumulative, but skewed towards new material.

Pre-midterm topics:

1. Asymptotic analysis, modeling code as equations
2. Anything related to dictionaries
3. Caching and locality

General study tips for mechanical problems:

General study tips for mechanical problems:

1. Drill until you can complete them very quickly

General study tips for mechanical problems:

1. Drill until you can complete them very quickly
2. Invent your own problems and check them using online tools

General study tips for mechanical problems:

1. Drill until you can complete them very quickly
2. Invent your own problems and check them using online tools

General study tips for non-mechanical problems:

General study tips for mechanical problems:

1. Drill until you can complete them very quickly
2. Invent your own problems and check them using online tools

General study tips for non-mechanical problems:

1. Do tons of practice

General study tips for mechanical problems:

1. Drill until you can complete them very quickly
2. Invent your own problems and check them using online tools

General study tips for non-mechanical problems:

1. Do tons of practice
2. Minor differences matter; make sure you ask about them

General study tips for mechanical problems:

1. Drill until you can complete them very quickly
2. Invent your own problems and check them using online tools

General study tips for non-mechanical problems:

1. Do tons of practice
2. Minor differences matter; make sure you ask about them
3. Definitions are important; make sure you know them

General study tips for mechanical problems:

1. Drill until you can complete them very quickly
2. Invent your own problems and check them using online tools

General study tips for non-mechanical problems:

Do tons of practice
Minor differences matter; make sure you ask about them
Definitions are important; make sure you know them

N =

For each data structure and algorithm we've studied, try
writing a document summarizing (a) the high-level idea of
how to implement them and (b) the best, average, and

worst-case runtimes.

General study tips for mechanical problems:

1.
2.

Drill until you can complete them very quickly
Invent your own problems and check them using online tools

General study tips for non-mechanical problems:

N =

Do tons of practice

Minor differences matter; make sure you ask about them
Definitions are important; make sure you know them

For each data structure and algorithm we've studied, try
writing a document summarizing (a) the high-level idea of
how to implement them and (b) the best, average, and
worst-case runtimes.

Think about what would happen if you were to tweak some

aspect of a data structure or algorithm 6

General tips when asked to analyze algorithms or code:

General tips when asked to analyze algorithms or code:

1. Don’t make assumptions about what the code is doing,
actually read it

General tips when asked to analyze algorithms or code:

1. Don’t make assumptions about what the code is doing,
actually read it

2. Try mentally running the code on specific examples

General tips when asked to analyze algorithms or code:

1. Don’t make assumptions about what the code is doing,
actually read it

2. Try mentally running the code on specific examples

General tips when asked to write pseudocode:

General tips when asked to analyze algorithms or code:

1. Don’t make assumptions about what the code is doing,
actually read it

2. Try mentally running the code on specific examples
General tips when asked to write pseudocode:

1. Keep a mental list of every data structure and algo we've
studied. When stuck, go through that list one-by-one and try
and find one that seems applicable

General tips when asked to analyze algorithms or code:

1. Don’t make assumptions about what the code is doing,

actually read it

2. Try mentally running the code on specific examples
General tips when asked to write pseudocode:

1. Keep a mental list of every data structure and algo we've
studied. When stuck, go through that list one-by-one and try
and find one that seems applicable

2. Try writing an algorithm that works on a specific example

first, then figure out how to generalize.

Syllabus change:

Syllabus change:

Previously:

» Midterm was 20% of grade
» Final was 20% of grade

Syllabus change:

Previously:

» Midterm was 20% of grade
» Final was 20% of grade

Now:

» Your lowest-scoring exam will be 15% of grade

» Your highest-scoring exam will be 25% of grade

Last time:

Last time:

» Introduced the idea of decision problems and complexity
classes

Last time:

» Introduced the idea of decision problems and complexity
classes

P Introduced the complexity classes P and EXP

Last time:

» Introduced the idea of decision problems and complexity
classes

P Introduced the complexity classes P and EXP

» Found some (useful!) problems are, unfortunately, in EXP

Last time:

» Introduced the idea of decision problems and complexity
classes

P Introduced the complexity classes P and EXP
» Found some (useful!) problems are, unfortunately, in EXP

» But many of those problems are also in NP!

Last time:

» Introduced the idea of decision problems and complexity
classes

Introduced the complexity classes P and EXP
Found some (useful!) problems are, unfortunately, in EXP

But many of those problems are also in NP!

vV v.Yvyy

Question: if there are problems where we can verify answers
efficiently, does that mean we can also find answers
efficiently?

Is CIRCUIT-SAT in NP?

Question: is CIRCUIT-SAT in NP?

10

Is CIRCUIT-SAT in NP?

Question: is CIRCUIT-SAT in NP?
CIRCUIT-SAT
Given a boolean expression such as “a & (b || ¢)” and the

truth values for some of the variables, is there a way to set the
remaining variables so that the output is T?

10

Is CIRCUIT-SAT in NP?

Question: is CIRCUIT-SAT in NP?
CIRCUIT-SAT
Given a boolean expression such as “a & (b || ¢)” and the

truth values for some of the variables, is there a way to set the
remaining variables so that the output is T?

Step 1: Assume you have a magical solver, and it said "yes” for
some boolean expression B.

10

Is CIRCUIT-SAT in NP?

Question: is CIRCUIT-SAT in NP?

CIRCUIT-SAT

Given a boolean expression such as “a & (b || ¢)” and the
truth values for some of the variables, is there a way to set the
remaining variables so that the output is T?

Step 1: Assume you have a magical solver, and it said "yes” for
some boolean expression B.

Step 2: Three questions to answer.

1. How do we modify the solver so it returns a convincing
certificate for B?
2. How do we check the certificate, whatever it is?
3. Does our verifier actually run in polynomial time?
10

Is CIRCUIT-SAT in NP?

Step 2a: How do we modify the solver so it returns a convincing
certificate?

11

Is CIRCUIT-SAT in NP?

Step 2a: How do we modify the solver so it returns a convincing
certificate?

Idea: return a map of the variable assignments!
{a=true, b=false, c=true, d=false, ...}

11

Is CIRCUIT-SAT in NP?

Step 2a: How do we modify the solver so it returns a convincing
certificate?

Idea: return a map of the variable assignments!
{a=true, b=false, c=true, d=false, ...}

2b: How do we check the certificate, whatever it is?

11

Is CIRCUIT-SAT in NP?

Step 2a: How do we modify the solver so it returns a convincing
certificate?

Idea: return a map of the variable assignments!
{a=true, b=false, c=true, d=false, ...}

2b: How do we check the certificate, whatever it is?

Idea: try evaluating the expression!

boolean verifyCiruitSat(BooleanAst B, Dictionary<String, Boolean> certificate) {
return evaluateExpr(B, certificate);

}

private boolean evaluateExpr(B, certificate) {
// Do something similar to toDoubleHelper, back from project 1

}

11

Is CIRCUIT-SAT in NP?

Step 2a: How do we modify the solver so it returns a convincing
certificate?

Idea: return a map of the variable assignments!
{a=true, b=false, c=true, d=false, ...}

2b: How do we check the certificate, whatever it is?

Idea: try evaluating the expression!

boolean verifyCiruitSat(BooleanAst B, Dictionary<String, Boolean> certificate) {
return evaluateExpr(B, certificate);

}

private boolean evaluateExpr(B, certificate) {
// Do something similar to toDoubleHelper, back from project 1

}

2c: Does our verifier actually run in polynomial time?

11

Is CIRCUIT-SAT in NP?

Step 2a: How do we modify the solver so it returns a convincing
certificate?

Idea: return a map of the variable assignments!
{a=true, b=false, c=true, d=false, ...}

2b: How do we check the certificate, whatever it is?

Idea: try evaluating the expression!

boolean verifyCiruitSat(BooleanAst B, Dictionary<String, Boolean> certificate) {
return evaluateExpr(B, certificate);

}

private boolean evaluateExpr(B, certificate) {
// Do something similar to toDoubleHelper, back from project 1

}

2c: Does our verifier actually run in polynomial time?

Yes: we visit each node and edge in the tree a constant number of

. 11
times.

Ranking problems

So far, we've talked about classifying problems into classes.

12

Ranking problems

So far, we've talked about classifying problems into classes.

Is there some way of “ranking” problems by difficulty?

12

Ranking problems

So far, we've talked about classifying problems into classes.
Is there some way of “ranking” problems by difficulty?

For example, is...

» 2-COLOR easier or harder then 3-COLOR?

12

Ranking problems

So far, we've talked about classifying problems into classes.
Is there some way of “ranking” problems by difficulty?

For example, is...

» 2-COLOR easier or harder then 3-COLOR?
» 3-COLOR easier or harder then CIRCUIT-SAT?

12

Ranking problems

Yes, using reductions.

13

Ranking problems

Yes, using reductions.
Reductions

Given two decision problems A and B, we can show that A is
“harder then or the same difficulty as” B by...

13

Ranking problems

Yes, using reductions.
Reductions

Given two decision problems A and B, we can show that A is
“harder then or the same difficulty as” B by...

1. Assuming we have some magical solver for A

13

Ranking problems

Yes, using reductions.
Reductions

Given two decision problems A and B, we can show that A is
“harder then or the same difficulty as” B by...

1. Assuming we have some magical solver for A

2. Create an algorithm which calls the magical solver to solve B

13

Ranking problems

Yes, using reductions.
Reductions

Given two decision problems A and B, we can show that A is
“harder then or the same difficulty as” B by...

1. Assuming we have some magical solver for A

2. Create an algorithm which calls the magical solver to solve B

Core ideas: If solving A lets us also solve B, then...

» A was “harder then” (or the same as) B

13

Ranking problems

Yes, using reductions.
Reductions

Given two decision problems A and B, we can show that A is
“harder then or the same difficulty as” B by...

1. Assuming we have some magical solver for A

2. Create an algorithm which calls the magical solver to solve B

Core ideas: If solving A lets us also solve B, then...

» A was “harder then” (or the same as) B
» The B was really a special case of A all along!

13

Ranking problems

Yes, using reductions.

Reductions
Given two decision problems A and B, we can show that A is
“harder then or the same difficulty as” B by...

1. Assuming we have some magical solver for A

2. Create an algorithm which calls the magical solver to solve B

Core ideas: If solving A lets us also solve B, then...

» A was “harder then” (or the same as) B
» The B was really a special case of A all along!
» We've reduced the number of distinct problems in the world

by one.
13

Showing 2-COLOR reduces to 3-COLOR

We want to show that 2-COLOR reduces to 3-COLOR: that
3-COLOR is “harder then” 2-COLOR.

14

Showing 2-COLOR reduces to 3-COLOR

We want to show that 2-COLOR reduces to 3-COLOR: that
3-COLOR is “harder then” 2-COLOR.

Step 1: Assume we have a magical solver for 2-COLOR

14

Showing 2-COLOR reduces to 3-COLOR

We want to show that 2-COLOR reduces to 3-COLOR: that
3-COLOR is “harder then” 2-COLOR.

Step 1: Assume we have a magical solver for 2-COLOR

Step 2: Using this magical solver, how do we solve an instance of
2-COLOR?

14

Showing 2-COLOR reduces to 3-COLOR

We want to show that 2-COLOR reduces to 3-COLOR: that
3-COLOR is “harder then” 2-COLOR.

Step 1: Assume we have a magical solver for 2-COLOR

Step 2: Using this magical solver, how do we solve an instance of
2-COLOR?

Answer:

1. Start by adding a new vertex to the graph
2. Connect this vertex to all other nodes

3. Give this vertex some color. This forces all other vertices to
have a only one of two colors!

4. Run the solver for 3-COLOR, return the result

14

Showing problems are the same

New question: How do we show two problems are the same?

15

Showing problems are the same

New question: How do we show two problems are the same?

Intuition:

» To show two numbers a and b are the same, we can show
a>band a<b.

15

Showing problems are the same

New question: How do we show two problems are the same?
Intuition:

» To show two numbers a and b are the same, we can show
a>band a<b.

» To show two functions f(n) and g(n) are asymptotically the
same, we can show that f(n) both dominates and is
dominated by g(n)

15

Showing problems are the same

New question: How do we show two problems are the same?

Intuition:

» To show two numbers a and b are the same, we can show
a>band a<b.

» To show two functions f(n) and g(n) are asymptotically the
same, we can show that f(n) both dominates and is
dominated by g(n)

» To show two decision problems A and B are the same, we can
show that A reduces to B and B reduces Al

15

LONG-PATH and HAM-PATH

LONG-PATH
Given a graph G and some integer k, does G contain some path
that uses k edges?

16

LONG-PATH and HAM-PATH

LONG-PATH
Given a graph G and some integer k, does G contain some path
that uses k edges?

HAM-PATH
Given a graph G, does G have a path that visits every vertex?

16

LONG-PATH and HAM-PATH

LONG-PATH
Given a graph G and some integer k, does G contain some path
that uses k edges?

HAM-PATH
Given a graph G, does G have a path that visits every vertex?

Goal: Show that LONG-PATH and HAM-PATH are the same

16

LONG-PATH and HAM-PATH

LONG-PATH
Given a graph G and some integer k, does G contain some path
that uses k edges?

HAM-PATH
Given a graph G, does G have a path that visits every vertex?
Goal: Show that LONG-PATH and HAM-PATH are the same

Step 1:
Reduce HAM-PATH to LONG-PATH

16

LONG-PATH and HAM-PATH

LONG-PATH
Given a graph G and some integer k, does G contain some path
that uses k edges?

HAM-PATH
Given a graph G, does G have a path that visits every vertex?

Goal: Show that LONG-PATH and HAM-PATH are the same

Step 1:
Reduce HAM-PATH to LONG-PATH

boolean hamPathSolver(G) {
return longPathSolver(G, |V| - 1)
}

16

LONG-PATH and HAM-PATH

LONG-PATH
Given a graph G and some integer k, does G contain some path
that uses k edges?

HAM-PATH
Given a graph G, does G have a path that visits every vertex?

Goal: Show that LONG-PATH and HAM-PATH are the same

Step 1: Step 2:
Reduce HAM-PATH to LONG-PATH Reduce LONG-PATH to HAM-PATH

boolean hamPathSolver(G) {
return longPathSolver(G, |V| - 1)
}

16

LONG-PATH and HAM-PATH

LONG-PATH
Given a graph G and some integer k, does G contain some path
that uses k edges?

HAM-PATH
Given a graph G, does G have a path that visits every vertex?

Goal: Show that LONG-PATH and HAM-PATH are the same

Step 1: Step 2:
Reduce HAM-PATH to LONG-PATH Reduce LONG-PATH to HAM-PATH
boolean hamPathSolver(G) { boolean longPathSolver(G, k) {
return longPathSolver(G, |V| - 1) for (G2=(v1, v2, ..., vk) : G):
} if (hamPathSolver(G2))

return true;
return false;

16

Equivalent problems

Punchline: HAM-PATH and LONG-PATH are actually the same
problem in disguise!

17

Equivalent problems

Punchline: HAM-PATH and LONG-PATH are actually the same
problem in disguise!

Question: Are there other problems that are secretly the same
problem in disguise?

17

Equivalent problems

Punchline: HAM-PATH and LONG-PATH are actually the same
problem in disguise!

Question: Are there other problems that are secretly the same

problem in disguise?
Yes! It turns out that...
» CIRCUIT-SAT
» 3-COLOR

> HAM-PATH
> LONG-PATH

...are all the same problem.

17

NP-HARD and NP-COMPLETE

Is there some problem that's “harder then or same as” all of the
problems we've seen so far?

18

NP-HARD and NP-COMPLETE

Is there some problem that's “harder then or same as” all of the

problems we've seen so far?

Yes! For example, CIRCUIT-SAT (and therefore HAM-PATH and
LONG-PATH and 3-COLOR).

18

NP-HARD and NP-COMPLETE

Is there some problem that's “harder then or same as” all of the
problems we've seen so far?

Yes! For example, CIRCUIT-SAT (and therefore HAM-PATH and
LONG-PATH and 3-COLOR).
NP-HARD

A decision problem is NP-HARD if that decision problem is
“harder then or as hard as” any other problem in NP.

18

NP-HARD and NP-COMPLETE

Is there some problem that's “harder then or same as” all of the
problems we've seen so far?

Yes! For example, CIRCUIT-SAT (and therefore HAM-PATH and
LONG-PATH and 3-COLOR).

NP-HARD

A decision problem is NP-HARD if that decision problem is

“harder then or as hard as” any other problem in NP.

Alternative phrasing: if every single decision problem in NP
reduces to X, then X is NP-HARD.

18

NP-HARD and NP-COMPLETE

Is there some problem that's “harder then or same as” all of the

problems we've seen so far?

Yes! For example, CIRCUIT-SAT (and therefore HAM-PATH and
LONG-PATH and 3—COLOR).

NP-HARD

A decision problem is NP-HARD if that decision problem is
“harder then or as hard as” any other problem in NP.

Alternative phrasing: if every single decision problem in NP
reduces to X, then X is NP-HARD.

NP-COMPLETE
A decision problem is NP-COMPLETE if it is both in NP and in
NP-HARD.

18

NP-HARD and NP-COMPLETE

Punchline: If we have a way of solving any NP-HARD problem,
we have a way of solving every problem we've looked at so far.

19

NP-HARD and NP-COMPLETE

How do these relate?

20

NP-HARD and NP-COMPLETE

How do these relate?

How do all relate to P?

20

Is P a subset of EXP?

Last time, we asked if P is a subset of EXP.

21

Is P a subset of EXP?

Last time, we asked if P is a subset of EXP.

Answer 1: The sets are disjoint m
EXP |

E.g. if a problemisin P, it's not in EXP. /

A 4

21

Is P a subset of EXP?

Last time, we asked if P is a subset of EXP.

Answer 1: The sets are disjoint
E.g. if a problemisin P, it’s not in EXP.

Answer 2: The sets overlap
E.g. some, but not all problems in P
are in EXP

e
2}

21

Is P a subset of EXP?

Last time, we asked if P is a subset of EXP.

Answer 1: The sets are disjoint
E.g. if a problemisin P, it's not in EXP.

@ @
Answer 2: The sets overlap
E.g. some, but not all problems in P
are in EXP
21

Answer 3: P is a subset of EXP
All problems in P are also in EXP

Is P a subset of EXP?

Last time, we asked if P is a subset of EXP.

It turns out, yes, P is indeed a subset of EXP:

Answer 3: P is a subset of EXP
All problems in P are also in EXP

22

Is P a subset of EXP?

Last time, we asked if P is a subset of EXP.

It turns out, yes, P is indeed a subset of EXP:

Answer 3: P is a subset of EXP
All problems in P are also in EXP

Reason: EXP is the set of decision problems where there exists an
algorithm that solves the problem in worst-case exponential time.

22

Is P a subset of EXP?

Last time, we asked if P is a subset of EXP.

It turns out, yes, P is indeed a subset of EXP:

Answer 3: P is a subset of EXP
All problems in P are also in EXP

Reason: EXP is the set of decision problems where there exists an

algorithm that solves the problem in worst-case exponential time.

So, if we can find a polynomial-time algorithm to a problem, we

can definitely find an exponential one!

22

Is P a subset of NP?

New question: is a P a subset of NP?

23

Is P a subset of NP?

New question: is a P a subset of NP?

Answer 1: The sets are disjoint Q

E.g. if a problem is in P, it's not in NP. \)

23

Is P a subset of NP?

New question: is a P a subset of NP?

Answer 1: The sets are disjoint
E.g. if a problem is in P, it's not in NP.

Answer 2: The sets overlap
E.g. some, but not all problems in P
are in NP

Y
Q)

23

Is P a subset of NP?

New question: is a P a subset of NP?

Answer 1: The sets are disjoint
E.g. if a problem is in P, it's not in NP.

Answer 2: The sets overlap
E.g. some, but not all problems in P
are in NP
23

Answer 3: P is a subset of NP
All problems in P are also in NP

Is P a subset of NP?

New question: is a P a subset of NP?

It turns out, yes.

Answer 3: P is a subset of NP
All problems in P are also in NP

24

Is P a subset of NP?

Reason: Let's say we have some decision problem X.

Step 1: Assume we have a magical solver for X, and it said “yes”
for some input.

25

Is P a subset of NP?

Reason: Let's say we have some decision problem X.

Step 1: Assume we have a magical solver for X, and it said “yes”

for some input.

Step 2: Three questions to answer.

25

Is P a subset of NP?

Reason: Let's say we have some decision problem X.

Step 1: Assume we have a magical solver for X, and it said “yes”

for some input.

Step 2: Three questions to answer.

1. How do make the solver so it returns a convincing certificate?

25

Is P a subset of NP?

Reason: Let's say we have some decision problem X.

Step 1: Assume we have a magical solver for X, and it said “yes”

for some input.

Step 2: Three questions to answer.

1. How do make the solver so it returns a convincing certificate?
One possible certificate: return the string " _(*Y)_/"".

25

Is P a subset of NP?

Reason: Let's say we have some decision problem X.

Step 1: Assume we have a magical solver for X, and it said “yes”

for some input.

Step 2: Three questions to answer.

1. How do make the solver so it returns a convincing certificate?
One possible certificate: return the string " _(*Y)_/"".
2. How do we check the certificate, whatever it is?

25

Is P a subset of NP?

Reason: Let's say we have some decision problem X.

Step 1: Assume we have a magical solver for X, and it said “yes”

for some input.

Step 2: Three questions to answer.

1. How do make the solver so it returns a convincing certificate?
One possible certificate: return the string " _(*Y)_/"".
2. How do we check the certificate, whatever it is?

Idea: just ignore the certificate

boolean verifyX(input, certificate) {
return solverX(input);

}

25

Is P a subset of NP?

Reason: Let's say we have some decision problem X.

Step 1: Assume we have a magical solver for X, and it said “yes”

for some input.

Step 2: Three questions to answer.

1. How do make the solver so it returns a convincing certificate?
One possible certificate: return the string " _(*Y)_/"".
2. How do we check the certificate, whatever it is?

Idea: just ignore the certificate

boolean verifyX(input, certificate) {
return solverX(input);

}
3. Does our verifier actually run in polynomial time?
Yep. If X was originally in P, then we know by definition

solverX runs in polynomial time. -

Is P a subset of NP?

Punchline: For any problem in P, we can build a verifier by just
re-using the solver!

26

Is P = NP?

Third question: is P = NP?

27

Is P = NP?

Third question: is P = NP?

Answer 1: No
P is a subset of NP, but that's it.

27

Is P = NP?

Third question: is P = NP?

Answer 1: No
P is a subset of NP, but that's it.

Answer 2: Yes
Not only is a P a subset of NP, they're
exactly the same

27

Is P = NP?

Third question: is P = NP?

Answer 1: No
P is a subset of NP, but that's it.

Answer 2: Yes
Not only is a P a subset of NP, they're
exactly the same

Answer: We don’t know.

27

What if P # NP?

What if P # NP?

Answer 1: No
P is a subset of NP, but that's it.

28

What if P # NP?

What if P # NP?

Answer 1: No
P is a subset of NP, but that's it.

» Have your name be immortalized in CS textbooks forever

28

What if P # NP?

What if P # NP?

Answer 1: No
P is a subset of NP, but that's it.

» Have your name be immortalized in CS textbooks forever

» Win 1 million dollars for solving a Millenium Prize problem

28

What if P # NP?

What if P # NP?

Answer 1: No
P is a subset of NP, but that's it.

» Have your name be immortalized in CS textbooks forever
» Win 1 million dollars for solving a Millenium Prize problem

» The world otherwise looks the same

28

What if P # NP?

If P # NP, and we have an NP problem, what do we do?

» Try and find approximate solutions

29

What if P # NP?

If P # NP, and we have an NP problem, what do we do?

» Try and find approximate solutions
» Use probabilistic algorithms

29

What if P # NP?

If P # NP, and we have an NP problem, what do we do?

» Try and find approximate solutions

» Use probabilistic algorithms

» Use solvers that work efficiently on many (but not alll)
instances of NP-COMPLETE problems.
(E.g. programs like z3, which solve CIRCUIT-SAT)

29

What if P # NP?

If P # NP, and we have an NP problem, what do we do?

>
>
>

Try and find approximate solutions

Use probabilistic algorithms

Use solvers that work efficiently on many (but not all!)
instances of NP-COMPLETE problems.

(E.g. programs like z3, which solve CIRCUIT-SAT)
Find a way of reducing your problem into some famous
NP-HARD problem and use a solver

29

What if P # NP?

If P # NP, and we have an NP problem, what do we do?

>
>
>

Try and find approximate solutions

Use probabilistic algorithms

Use solvers that work efficiently on many (but not all!)
instances of NP-COMPLETE problems.

(E.g. programs like z3, which solve CIRCUIT-SAT)

Find a way of reducing your problem into some famous
NP-HARD problem and use a solver

Crowdsource. Observation: lots of games are actually NP
(e.g. sudoku).

Actual example: Foldit, a protein folding “game”

29

What if P # NP?

If P # NP, and we have an NP problem, what do we do?

>
>
>

Try and find approximate solutions

Use probabilistic algorithms

Use solvers that work efficiently on many (but not all!)
instances of NP-COMPLETE problems.

(E.g. programs like z3, which solve CIRCUIT-SAT)

Find a way of reducing your problem into some famous
NP-HARD problem and use a solver

Crowdsource. Observation: lots of games are actually NP
(e.g. sudoku).

Actual example: Foldit, a protein folding “game”

Something something quantum computing? (Lots of caveats,
not practical right now, doesn’t solve everything, even if they
work.) 29

What if P = NP?

What if P = NP?

What if this is reality?

30

What if P = NP?

What if P = NP?
What if this is reality?

AND what if we have an efficient way of solving any
NP-COMPLETE problem?

30

What if P = NP?

» Have your name be immortalized in CS textbooks forever

31

What if P = NP?

» Have your name be immortalized in CS textbooks forever

» Win 1 million dollars for solving a Millenium Prize problem

31

What if P = NP?

» Have your name be immortalized in CS textbooks forever
» Win 1 million dollars for solving a Millenium Prize problem

» Finding a way of generating a proof of anything (assuming the
proof is a reasonable length)

31

What if P = NP?

» Have your name be immortalized in CS textbooks forever
» Win 1 million dollars for solving a Millenium Prize problem

» Finding a way of generating a proof of anything (assuming the

proof is a reasonable length)

» Win 5 million more dollars for solving the remaining

Millenium Prize problems

31

What if P = NP?

» Have your name be immortalized in CS textbooks forever
» Win 1 million dollars for solving a Millenium Prize problem

» Finding a way of generating a proof of anything (assuming the
proof is a reasonable length)

» Win 5 million more dollars for solving the remaining
Millenium Prize problems

» Crack all of modern encryption, and have all the dollars

31

What if P = NP?

» Have your name be immortalized in CS textbooks forever
» Win 1 million dollars for solving a Millenium Prize problem

» Finding a way of generating a proof of anything (assuming the
proof is a reasonable length)

» Win 5 million more dollars for solving the remaining
Millenium Prize problems

» Crack all of modern encryption, and have all the dollars

» Crack all of modern encryption, and have access to all
information, public or private

31

What if P = NP?

» Have your name be immortalized in CS textbooks forever
» Win 1 million dollars for solving a Millenium Prize problem

» Finding a way of generating a proof of anything (assuming the
proof is a reasonable length)

» Win 5 million more dollars for solving the remaining
Millenium Prize problems

» Crack all of modern encryption, and have all the dollars

» Crack all of modern encryption, and have access to all
information, public or private

» Literally cure cancer

31

