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Warmup

Remind your neighbor:

» What is a decision-problem?
A yes-or-no question
» What is P, EXP, and NP?

1. P is the set of all decision problems that can be solved in

worst-case polynomial time
2. EXP is the set of all decision problems that can be solved in

worst-case exponential time
3. NP is the set of all decision problems where we can verify all

“yes" answers in worst-case polynomial time
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Final logistics:

» Thursday, March 15
» 2:30 to 4:20
» Gowen 301

If you need to take the final at a different date:

» If you've already sent me an email, no action needed

» Otherwise, send me an email by the end of today
Review sessions:

» Monday, Mar 12: EEB 125, 4:30 to 6:30
» Tuesday, Mar 13: EEB 105, 4:30 to 6:30



The final will be cumulative, but skewed towards new material.

Post-midterm topics:

1. Heaps



The final will be cumulative, but skewed towards new material.

Post-midterm topics:

1. Heaps
2. Sorting, basic divide-and-conquer



The final will be cumulative, but skewed towards new material.

Post-midterm topics:

1. Heaps
2. Sorting, basic divide-and-conquer
3. The tree method and the master method



The final will be cumulative, but skewed towards new material.

Post-midterm topics:

1. Heaps

2. Sorting, basic divide-and-conquer

3. The tree method and the master method
4. Graphs



The final will be cumulative, but skewed towards new material.

Post-midterm topics:

. Heaps
. Sorting, basic divide-and-conquer
. The tree method and the master method

AW NN =

. Graphs
» Definitions
» Representation
» Traversal
» Dijkstra's
» Topological sort
» MSTs (Prim, Kruskal, disjoint sets)



The final will be cumulative, but skewed towards new material.

Post-midterm topics:

1. Heaps
2. Sorting, basic divide-and-conquer
3. The tree method and the master method
4. Graphs

» Definitions

» Representation

» Traversal

» Dijkstra's

» Topological sort

» MSTs (Prim, Kruskal, disjoint sets)
5. P and NP
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The final will be cumulative, but skewed towards new material.

Pre-midterm topics:

1. Asymptotic analysis, modeling code as equations
2. Anything related to dictionaries
3. Caching and locality
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General study tips for mechanical problems:

1.
2.

Drill until you can complete them very quickly
Invent your own problems and check them using online tools

General study tips for non-mechanical problems:

N =

Do tons of practice

Minor differences matter; make sure you ask about them
Definitions are important; make sure you know them

For each data structure and algorithm we've studied, try
writing a document summarizing (a) the high-level idea of
how to implement them and (b) the best, average, and
worst-case runtimes.

Think about what would happen if you were to tweak some

aspect of a data structure or algorithm 6
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General tips when asked to analyze algorithms or code:

1. Don’t make assumptions about what the code is doing,

actually read it

2. Try mentally running the code on specific examples
General tips when asked to write pseudocode:

1. Keep a mental list of every data structure and algo we've
studied. When stuck, go through that list one-by-one and try
and find one that seems applicable

2. Try writing an algorithm that works on a specific example

first, then figure out how to generalize.
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Syllabus change:

Previously:

» Midterm was 20% of grade
» Final was 20% of grade

Now:

» Your lowest-scoring exam will be 15% of grade

» Your highest-scoring exam will be 25% of grade
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Last time:

» Introduced the idea of decision problems and complexity
classes

Introduced the complexity classes P and EXP
Found some (useful!) problems are, unfortunately, in EXP

But many of those problems are also in NP!

vV v.Yvyy

Question: if there are problems where we can verify answers
efficiently, does that mean we can also find answers
efficiently?
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Question: is CIRCUIT-SAT in NP?

CIRCUIT-SAT

Given a boolean expression such as “a & (b || ¢)” and the
truth values for some of the variables, is there a way to set the
remaining variables so that the output is T?

Step 1: Assume you have a magical solver, and it said "yes” for
some boolean expression B.

Step 2: Three questions to answer.

1. How do we modify the solver so it returns a convincing
certificate for B?
2. How do we check the certificate, whatever it is?
3. Does our verifier actually run in polynomial time?
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Is CIRCUIT-SAT in NP?

Step 2a: How do we modify the solver so it returns a convincing
certificate?

Idea: return a map of the variable assignments!
{a=true, b=false, c=true, d=false, ...}

2b: How do we check the certificate, whatever it is?

Idea: try evaluating the expression!

boolean verifyCiruitSat(BooleanAst B, Dictionary<String, Boolean> certificate) {
return evaluateExpr(B, certificate);

}

private boolean evaluateExpr(B, certificate) {
// Do something similar to toDoubleHelper, back from project 1

}

2c: Does our verifier actually run in polynomial time?

Yes: we visit each node and edge in the tree a constant number of

. 11
times.
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So far, we've talked about classifying problems into classes.
Is there some way of “ranking” problems by difficulty?

For example, is...

» 2-COLOR easier or harder then 3-COLOR?
» 3-COLOR easier or harder then CIRCUIT-SAT?
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Ranking problems

Yes, using reductions.

Reductions
Given two decision problems A and B, we can show that A is
“harder then or the same difficulty as” B by...

1. Assuming we have some magical solver for A

2. Create an algorithm which calls the magical solver to solve B

Core ideas: If solving A lets us also solve B, then...

» A was “harder then” (or the same as) B
» The B was really a special case of A all along!
» We've reduced the number of distinct problems in the world

by one.
13
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Showing 2-COLOR reduces to 3-COLOR

We want to show that 2-COLOR reduces to 3-COLOR: that
3-COLOR is “harder then” 2-COLOR.

Step 1: Assume we have a magical solver for 2-COLOR

Step 2: Using this magical solver, how do we solve an instance of
2-COLOR?

Answer:

1. Start by adding a new vertex to the graph
2. Connect this vertex to all other nodes

3. Give this vertex some color. This forces all other vertices to
have a only one of two colors!

4. Run the solver for 3-COLOR, return the result

14
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Showing problems are the same

New question: How do we show two problems are the same?

Intuition:

» To show two numbers a and b are the same, we can show
a>band a<b.

» To show two functions f(n) and g(n) are asymptotically the
same, we can show that f(n) both dominates and is
dominated by g(n)

» To show two decision problems A and B are the same, we can
show that A reduces to B and B reduces Al

15
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LONG-PATH and HAM-PATH

LONG-PATH
Given a graph G and some integer k, does G contain some path
that uses k edges?

HAM-PATH
Given a graph G, does G have a path that visits every vertex?

Goal: Show that LONG-PATH and HAM-PATH are the same

Step 1: Step 2:
Reduce HAM-PATH to LONG-PATH Reduce LONG-PATH to HAM-PATH
boolean hamPathSolver(G) { boolean longPathSolver(G, k) {
return longPathSolver(G, |V| - 1) for (G2=(v1, v2, ..., vk) : G):
} if (hamPathSolver(G2))

return true;
return false;

16
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Equivalent problems

Punchline: HAM-PATH and LONG-PATH are actually the same
problem in disguise!

Question: Are there other problems that are secretly the same

problem in disguise?
Yes! It turns out that...
» CIRCUIT-SAT
» 3-COLOR

> HAM-PATH
> LONG-PATH

...are all the same problem.

17
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NP-HARD and NP-COMPLETE

Is there some problem that's “harder then or same as” all of the

problems we've seen so far?

Yes! For example, CIRCUIT-SAT (and therefore HAM-PATH and
LONG-PATH and 3—COLOR).

NP-HARD

A decision problem is NP-HARD if that decision problem is
“harder then or as hard as” any other problem in NP.

Alternative phrasing: if every single decision problem in NP
reduces to X, then X is NP-HARD.

NP-COMPLETE
A decision problem is NP-COMPLETE if it is both in NP and in
NP-HARD.

18



NP-HARD and NP-COMPLETE

Punchline: If we have a way of solving any NP-HARD problem,
we have a way of solving every problem we've looked at so far.
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NP-HARD and NP-COMPLETE

How do these relate?

How do all relate to P?
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@ @
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Last time, we asked if P is a subset of EXP.

It turns out, yes, P is indeed a subset of EXP:

Answer 3: P is a subset of EXP
All problems in P are also in EXP

Reason: EXP is the set of decision problems where there exists an
algorithm that solves the problem in worst-case exponential time.

22



Is P a subset of EXP?

Last time, we asked if P is a subset of EXP.

It turns out, yes, P is indeed a subset of EXP:

Answer 3: P is a subset of EXP
All problems in P are also in EXP

Reason: EXP is the set of decision problems where there exists an

algorithm that solves the problem in worst-case exponential time.

So, if we can find a polynomial-time algorithm to a problem, we

can definitely find an exponential one!

22
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Y
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Is P a subset of NP?

New question: is a P a subset of NP?

It turns out, yes.

Answer 3: P is a subset of NP
All problems in P are also in NP
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Step 1: Assume we have a magical solver for X, and it said “yes”
for some input.
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1. How do make the solver so it returns a convincing certificate?
One possible certificate: return the string " \_(*Y)_/"".
2. How do we check the certificate, whatever it is?

Idea: just ignore the certificate

boolean verifyX(input, certificate) {
return solverX(input);
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Is P a subset of NP?

Reason: Let's say we have some decision problem X.

Step 1: Assume we have a magical solver for X, and it said “yes”

for some input.

Step 2: Three questions to answer.

1. How do make the solver so it returns a convincing certificate?
One possible certificate: return the string " \_(*Y)_/"".
2. How do we check the certificate, whatever it is?

Idea: just ignore the certificate

boolean verifyX(input, certificate) {
return solverX(input);

}
3. Does our verifier actually run in polynomial time?
Yep. If X was originally in P, then we know by definition

solverX runs in polynomial time. -



Is P a subset of NP?

Punchline: For any problem in P, we can build a verifier by just
re-using the solver!
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Third question: is P = NP?
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Is P = NP?

Third question: is P = NP?

Answer 1: No
P is a subset of NP, but that's it.

Answer 2: Yes
Not only is a P a subset of NP, they're
exactly the same

Answer: We don’t know.
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Answer 1: No
P is a subset of NP, but that's it.
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What if P # NP?

What if P # NP?

Answer 1: No
P is a subset of NP, but that's it.

» Have your name be immortalized in CS textbooks forever
» Win 1 million dollars for solving a Millenium Prize problem

» The world otherwise looks the same
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What if P # NP?

If P # NP, and we have an NP problem, what do we do?

» Try and find approximate solutions

29



What if P # NP?

If P # NP, and we have an NP problem, what do we do?

» Try and find approximate solutions
» Use probabilistic algorithms

29



What if P # NP?

If P # NP, and we have an NP problem, what do we do?

» Try and find approximate solutions

» Use probabilistic algorithms

» Use solvers that work efficiently on many (but not alll)
instances of NP-COMPLETE problems.
(E.g. programs like z3, which solve CIRCUIT-SAT)

29



What if P # NP?

If P # NP, and we have an NP problem, what do we do?

>
>
>

Try and find approximate solutions

Use probabilistic algorithms

Use solvers that work efficiently on many (but not all!)
instances of NP-COMPLETE problems.

(E.g. programs like z3, which solve CIRCUIT-SAT)
Find a way of reducing your problem into some famous
NP-HARD problem and use a solver

29



What if P # NP?

If P # NP, and we have an NP problem, what do we do?

>
>
>

Try and find approximate solutions

Use probabilistic algorithms

Use solvers that work efficiently on many (but not all!)
instances of NP-COMPLETE problems.

(E.g. programs like z3, which solve CIRCUIT-SAT)

Find a way of reducing your problem into some famous
NP-HARD problem and use a solver

Crowdsource. Observation: lots of games are actually NP
(e.g. sudoku).

Actual example: Foldit, a protein folding “game”

29



What if P # NP?

If P # NP, and we have an NP problem, what do we do?

>
>
>

Try and find approximate solutions

Use probabilistic algorithms

Use solvers that work efficiently on many (but not all!)
instances of NP-COMPLETE problems.

(E.g. programs like z3, which solve CIRCUIT-SAT)

Find a way of reducing your problem into some famous
NP-HARD problem and use a solver

Crowdsource. Observation: lots of games are actually NP
(e.g. sudoku).

Actual example: Foldit, a protein folding “game”

Something something quantum computing? (Lots of caveats,
not practical right now, doesn’t solve everything, even if they
work.) 29
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What if P = NP?

What if this is reality?
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What if P = NP?

What if P = NP?
What if this is reality?

AND what if we have an efficient way of solving any
NP-COMPLETE problem?
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What if P = NP?

» Have your name be immortalized in CS textbooks forever
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What if P = NP?

» Have your name be immortalized in CS textbooks forever
» Win 1 million dollars for solving a Millenium Prize problem

» Finding a way of generating a proof of anything (assuming the
proof is a reasonable length)

» Win 5 million more dollars for solving the remaining
Millenium Prize problems

» Crack all of modern encryption, and have all the dollars

» Crack all of modern encryption, and have access to all
information, public or private

» Literally cure cancer

31



