CSE 373: P vs NP

Michael Lee

Monday, Mar 5, 2018

Previously:

 $\,\blacktriangleright\,$ We spent a lot of time learning how to solve problems

Previously:

- ► We spent a lot of time learning how to solve problems
- ► We spent a lot of time analyzing algorithms

Today:

► Take a step back and look at the bigger picture

Today:

- ► Take a step back and look at the bigger picture
- Discuss an important open question in computer science: does P = NP?

What is "efficiency"?

But first:

What does it mean for a problem to be "efficient"?

What is "efficiency"?

But first:

What does it mean for a problem to be "efficient"?

What do we even mean by "problem", anyways?

Decision problem

A **decision problem** is any arbitrary yes-or-no question on an infinite set of inputs.

Decision problem

A **decision problem** is any arbitrary yes-or-no question on an infinite set of inputs.

Which of these are decision problems?

- ► IS-PRIME: "Is X prime? (Where X is some input)"
- ► FIND-PRIME: "What is the *n*-th prime number?"
- SORT: "Sort this list of numbers."
- ► IS-SORTED: "Is this list of numbers sorted?"

Decision problem

A **decision problem** is any arbitrary yes-or-no question on an infinite set of inputs.

Which of these are decision problems?

- ► IS-PRIME: "Is X prime? (Where X is some input)" Yes, it's a yes-or-no question.
- ► FIND-PRIME: "What is the *n*-th prime number?" No. The answer is a number, not a boolean.
- SORT: "Sort this list of numbers." No; not a question.
- ► IS-SORTED: "Is this list of numbers sorted?" Yes, it's a yes-or-no question.

Question: Why only talk about decision problems?

Question: Why only talk about decision problems?

Answer: It simplifies things. Also, most problems can be turned into a decision problem with some tweaking, so not a big deal.

Question: Why only talk about decision problems?

Answer: It simplifies things. Also, most problems can be turned into a decision problem with some tweaking, so not a big deal.

Example:

SHORTEST-PATH: "What is the shortest path between two given nodes?"

Question: Why only talk about decision problems?

Answer: It simplifies things. Also, most problems can be turned into a decision problem with some tweaking, so not a big deal.

Example:

SHORTEST-PATH: "What is the shortest path between two given nodes?"

...can be turned into:

PATH: "Does there exist a path between two given nodes that consists of k edges?"

Solvable

A decision problem is **solvable** if there exists some algorithm that given any input, or *instance*, can correctly *decide* "yes" or "no".

Solvable

A decision problem is **solvable** if there exists some algorithm that given any input, or *instance*, can correctly *decide* "yes" or "no".

Example: (IS-PRIME) is solvable. Here's an algorithm:

```
boolean isPrimeSolver(n):
    for (int i = 2; i < n; i++)
        if (X % i == 0):
            return false
    return true</pre>
```

Question: Are there problems that are unsolvable – problems that are impossible to solve?

Question: Are there problems that are unsolvable – problems that are impossible to solve?

Surprisingly, yes.

Question: Are there problems that are unsolvable – problems that are impossible to solve?

Surprisingly, yes.

We won't go into that today; look up the "halting problem" if you're curious.

Definitions

Questions:

▶ What do we even mean by "problem", anyways?

Definitions

Questions:

- ▶ What do we even mean by "problem", anyways?
- ▶ What does it mean for a problem to be "efficient"?

Efficient algorithm

An algorithm is **efficient** if the worst-case bound is a **polynomial**.

Efficient algorithm

An algorithm is **efficient** if the worst-case bound is a **polynomial**.

$$ightharpoonup \mathcal{O}\left(n^2\right)$$
:

Efficient algorithm

An algorithm is **efficient** if the worst-case bound is a **polynomial**.

Examples: which of these runtime bounds are "efficient"?

 $ightharpoonup \mathcal{O}\left(n^2\right)$: Yes, it's a polynomial

Efficient algorithm

An algorithm is **efficient** if the worst-case bound is a **polynomial**.

- $ightharpoonup \mathcal{O}\left(n^2\right)$: Yes, it's a polynomial
- $ightharpoonup \mathcal{O}\left(2^{n}\right)$:

Efficient algorithm

An algorithm is **efficient** if the worst-case bound is a **polynomial**.

- $ightharpoonup \mathcal{O}\left(n^2\right)$: Yes, it's a polynomial
- $ightharpoonup \mathcal{O}\left(2^{n}\right)$: No, it's an exponential

Efficient algorithm

An algorithm is **efficient** if the worst-case bound is a **polynomial**.

- $ightharpoonup \mathcal{O}\left(n^2\right)$: Yes, it's a polynomial
- $ightharpoonup \mathcal{O}\left(2^{n}\right)$: No, it's an exponential
- $ightharpoonup \mathcal{O}(n\log(n))$:

Efficient algorithm

An algorithm is **efficient** if the worst-case bound is a **polynomial**.

- $ightharpoonup \mathcal{O}\left(n^2\right)$: Yes, it's a polynomial
- $ightharpoonup \mathcal{O}\left(2^{n}\right)$: No, it's an exponential
- $ightharpoonup \mathcal{O}\left(n\log(n)
 ight)$: Yes, $n\log(n)\in\mathcal{O}\left(n^2
 ight)$, which is a polynomial

Efficient algorithm

An algorithm is **efficient** if the worst-case bound is a **polynomial**.

- $ightharpoonup \mathcal{O}\left(n^2\right)$: Yes, it's a polynomial
- $ightharpoonup \mathcal{O}\left(2^{n}\right)$: No, it's an exponential
- $ightharpoonup \mathcal{O}\left(n\log(n)\right)$: Yes, $n\log(n)\in\mathcal{O}\left(n^2\right)$, which is a polynomial
- $ightharpoonup \mathcal{O}\left(n^{100000000}\right)$:

Efficient algorithm

An algorithm is **efficient** if the worst-case bound is a **polynomial**.

- $ightharpoonup \mathcal{O}\left(n^2\right)$: Yes, it's a polynomial
- $ightharpoonup \mathcal{O}\left(2^{n}\right)$: No, it's an exponential
- $ightharpoonup \mathcal{O}\left(n\log(n)\right)$: Yes, $n\log(n)\in\mathcal{O}\left(n^2\right)$, which is a polynomial
- \triangleright $\mathcal{O}\left(n^{10000000}\right)$: Technically yes...

Efficient algorithm

An algorithm is **efficient** if the worst-case bound is a **polynomial**.

- $ightharpoonup \mathcal{O}\left(n^2\right)$: Yes, it's a polynomial
- $ightharpoonup \mathcal{O}\left(2^{n}\right)$: No, it's an exponential
- $ightharpoonup \mathcal{O}\left(n\log(n)\right)$: Yes, $n\log(n)\in\mathcal{O}\left(n^2\right)$, which is a polynomial
- \blacktriangleright $\mathcal{O}\left(n^{10000000}\right)$: Technically yes...
- ▶ $\mathcal{O}(3000000000000000000^3)$: Technically yes...

No, but...

No, but...

► Once we find a polynomial algorithm to a problem, we've historically been able to improve it to something reasonable

No, but...

- ► Once we find a polynomial algorithm to a problem, we've historically been able to improve it to something reasonable
- ► Finding a polynomial runtime is a *VERY* low bar. If we can't even get that...

Examples of problems

Pretty much all problems we've studied have efficient solutions!

Pretty much all problems we've studied have efficient solutions!

We've studied two main types of algorithms: sorting algorithms and graph algorithms, and every one we've looked at so far could run in polynomial time.

(e.g "How do I sort this list", "What is the shortest path", "What is the MST"...)

Great: do all solvable problems have efficient solutions?

Great: do all solvable problems have efficient solutions?

Haha, no.

Great: do all solvable problems have efficient solutions?

Haha, no.

Well, ok – do all *practical* problems we actually care about have efficient solutions?

Great: do all solvable problems have efficient solutions?

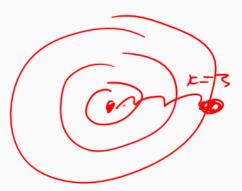
Haha, no.

Well, ok – do all *practical* problems we actually care about have efficient solutions?

lol

PATH sinputs

Given a graph and two vertices, does there exist some path between those two vertices that visits exactly k edges?



Lanother

PATH

Given a graph and two vertices, does there exist some path between those two vertices that visits exactly k edges?

- ightharpoonup To solve, run BFS and see if we visit the dest in k edges.
- ► We can solve this efficiently!

PATH

Given a graph and two vertices, does there exist some path between those two vertices that visits exactly k edges?

- ightharpoonup To solve, run BFS and see if we visit the dest in k edges.
- ▶ We can solve this efficiently!

What if we tweak the problem a little?

PATH

Given a graph and two vertices, does there exist some path between those two vertices that visits exactly k edges?

- ightharpoonup To solve, run BFS and see if we visit the dest in k edges.
- ► We can solve this efficiently!

What if we tweak the problem a little?

LONGEST-PATH

Given a graph, does there exist a path between $\frac{1}{2}$ any two vertices that visits exactly k edges?

PATH

Given a graph and two vertices, does there exist some path between those two vertices that visits exactly k edges?

- ightharpoonup To solve, run BFS and see if we visit the dest in k edges.
- ► We can solve this efficiently!

What if we tweak the problem a little?

LONGEST-PATH

Given a graph, does there exist a path between any two vertices that visits exactly k edges?

There is no known efficient solution to this problem.

To solve, use brute force.

2-COLOR

Given a graph, is it possible to assign each node one of two colors such that no two adjacent nodes share the same color?

- ► To solve, run BFS or DFS, alternate colors...
- ► We can solve this efficiently!

2-COLOR

Given a graph, is it possible to assign each node one of two colors such that no two adjacent nodes share the same color?

- ► To solve, run BFS or DFS, alternate colors...
- ▶ We can solve this efficiently!

What if we tweak the problem a little?

2-COLOR

Given a graph, is it possible to assign each node one of two colors such that no two adjacent nodes share the same color?

- ► To solve, run BFS or DFS, alternate colors...
- ► We can solve this efficiently!

What if we tweak the problem a little?

3-COLOR

Given a graph, is it possible to assign each node one of three colors such that no two adjacent nodes share the same color?"

2-COLOR

Given a graph, is it possible to assign each node one of two colors such that no two adjacent nodes share the same color?

- ► To solve, run BFS or DFS, alternate colors...
- ► We can solve this efficiently!

What if we tweak the problem a little?

3-COLOR

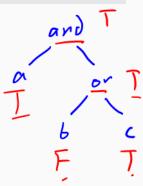
Given a graph, is it possible to assign each node one of **three** colors such that no two adjacent nodes share the same color?"

There is no known efficient solution to this problem.

To solve, use brute force: try all $\mathcal{O}\left(3^{|V|}\right)$ combinations.

CIRCUIT-VALUE

Given a boolean expression such as "a && (b || c)" and the truth values for every variable, is the final expression T?



CIRCUIT-VALUE

Given a boolean expression such as "a && (b || c)" and the truth values for every variable, is the final expression T?

- ► To solve, convert into an abstract syntax tree and evaluate.
- ► We can solve this efficiently!

CIRCUIT-VALUE

Given a boolean expression such as "a && (b | c)" and the truth values for every variable, is the final expression T?

- ► To solve, convert into an abstract syntax tree and evaluate.
- ► We can solve this efficiently!

CIRCUIT-SAT

Given a boolean expression such as "a && (b $\mid\mid$ c)" and the truth values for **some** of the variables, is there a way to set the remaining variables so that the output is T?

CIRCUIT-VALUE

Given a boolean expression such as "a && (b || c)" and the truth values for every variable, is the final expression T?

- ► To solve, convert into an abstract syntax tree and evaluate.
- ▶ We can solve this efficiently!

CIRCUIT-SAT

Given a boolean expression such as "a && (b || c)" and the truth values for **some** of the variables, is there a way to set the remaining variables so that the output is T?

There is no known efficient solution to this problem.

To solve, use brute force: try every combination of variables.

Complexity classes

Observation: Some problems have polynomial solutions, some have worse.

Can we formalize this?

Complexity classes

Observation: Some problems have polynomial solutions, some have worse.

Can we formalize this?

Complexity class

A **complexity class** is a set of problems limited by some resource constraint (time, space, etc)

Complexity class: P and EXP

The complexity class P

P is the set of all decision problems where there exists an algorithm that can solve all inputs in worst-case polynomial time.

Complexity class: P and EXP

The complexity class P

P is the set of all decision problems where there exists an algorithm that can solve all inputs in worst-case polynomial time.

Examples: IS-PRIME, IS-SORTED, PATH, 2-COLOR, CIRCUIT-VALUE, ...

Complexity class: P and EXP

The complexity class P

P is the set of all decision problems where there exists an algorithm that can solve all inputs in worst-case polynomial time.

Examples: IS-PRIME, IS-SORTED, PATH, 2-COLOR, CIRCUIT-VALUE, ...

The complexity class EXP

EXP is the set of all decision problems where there exists an algorithm that can solve all inputs in worst-case exponential time.

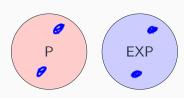
Examples: LONGEST-PATH, 3-COLOR, CIRCUIT-SAT...

Question: Suppose we have some random decision problem in P. Is that problem also in EXP?

E.g. is 2-COLOR in EXP?

There are three reasonable possibilities:

Answer 1: The sets are disjoint E.g. if a problem is in P, it's not in EXP.



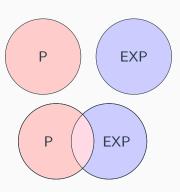
There are three reasonable possibilities:

Answer 1: The sets are disjoint

E.g. if a problem is in P, it's not in EXP.

Answer 2: The sets overlap

E.g. some, but not all problems in P are in EXP



There are three reasonable possibilities:

Answer 1: The sets are disjoint

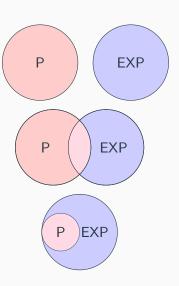
E.g. if a problem is in P, it's not in EXP.

Answer 2: The sets overlap

E.g. some, but not all problems in P are in EXP

Answer 3: P is a subset of EXP

All problems in P are also in EXP



It turns out it's answer 3: P is a subset of EXP.

Answer 3: P is a subset of EXP All problems in P are also in EXP

It turns out it's answer 3: P is a subset of EXP.

Answer 3: P is a subset of EXP All problems in P are also in EXP

Reason: EXP is the set of decision problems where there exists an algorithm that solves the problem in *worst-case exponential time*.

It turns out it's answer 3: P is a subset of EXP.

Answer 3: P is a subset of EXP All problems in P are also in EXP

Reason: EXP is the set of decision problems where there exists an algorithm that solves the problem in *worst-case exponential time*.

So, if we can find a polynomial-time algorithm to a problem, we can definitely find an exponential one!

Example: We previously showed there exists an $\mathcal{O}\left(n\right)$ algorithm to check if a number n is prime:

```
boolean isPrimeSolver(n):
    for (int i = 2; i < n; i++):
        if (X % i == 0):
            return false
    return true</pre>
```

So IS-PRIME \in P.

Example: We previously showed there exists an $\mathcal{O}(n)$ algorithm to check if a number n is prime:

```
boolean isPrimeSolver(n):
    for (int i = 2; i < n; i++):
        if (X % i == 0):
            return false
    return true</pre>
```

So IS-PRIME \in P.

How do we show that IS-PRIME is in EXP?

Example: We previously showed there exists an $\mathcal{O}(n)$ algorithm to check if a number n is prime:

```
boolean isPrimeSolver(n):
    for (int i = 2; i < n; i++):
        if (X % i == 0):
            return false
    return true</pre>
```

So IS-PRIME \in P.

How do we show that IS-PRIME is in EXP?

This runs in exponential time and correctly solves all inputs. So TS-PRIME is also in EXP

Recap

To recap:

► What is a decision problem?

Recap

To recap:

- ► What is a decision problem?
 - ▶ What does it mean to "solve" a decision problem?

Recap

To recap:

- ► What is a decision problem?
 - ▶ What does it mean to "solve" a decision problem?
 - ▶ What does it mean for an algorithm to be "efficient"?

- ► What is a decision problem?
 - ▶ What does it mean to "solve" a decision problem?
 - ▶ What does it mean for an algorithm to be "efficient"?
- ► What is a complexity class?

- ► What is a decision problem?
 - ▶ What does it mean to "solve" a decision problem?
 - ▶ What does it mean for an algorithm to be "efficient"?
- ► What is a complexity class?
 - ► F

- ► What is a decision problem?
 - ▶ What does it mean to "solve" a decision problem?
 - ▶ What does it mean for an algorithm to be "efficient"?
- ► What is a complexity class?
 - ▶ P
 - ► EXP

- ► What is a decision problem?
 - ▶ What does it mean to "solve" a decision problem?
 - ▶ What does it mean for an algorithm to be "efficient"?
- ► What is a complexity class?
 - ▶ P
 - ► EXP
 - ► P is a subset of EXP

- ► What is a decision problem?
 - ▶ What does it mean to "solve" a decision problem?
 - ▶ What does it mean for an algorithm to be "efficient"?
- ► What is a complexity class?
 - ▶ P
 - ► EXP
 - ▶ P is a subset of EXP
- ► Unfortunately, some problems we care about are in EXP

Observation: Some problems in EXP have an interesting property:

Observation: Some problems in EXP have an interesting property:

► They may take either polynomial or exponential time to *solve*, but either way...

Observation: Some problems in EXP have an interesting property:

- ► They may take either polynomial or exponential time to *solve*, but either way...
- Checking or verifying if a solution is correct always takes polynomial time!

Observation: Some problems in EXP have an interesting property:

- ► They may take either polynomial or exponential time to *solve*, but either way...
- Checking or verifying if a solution is correct always takes polynomial time!

Big idea: NP is the set of decision problems that can be verified in polynomial time.

Observation: Some problems in EXP have an interesting property:

- ► They may take either polynomial or exponential time to *solve*, but either way...
- Checking or verifying if a solution is correct always takes polynomial time!

Big idea: NP is the set of decision problems that can be verified in polynomial time.

If we can verify answers efficiently, can we find answers efficiently?

Reminder: a solver is an algorithm that accepts an *instance* of a decision-problem and returns true or false.

Reminder: a solver is an algorithm that accepts an *instance* of a decision-problem and returns true or false.

Another kind of algorithm – a verifier

Reminder: a solver is an algorithm that accepts an *instance* of a decision-problem and returns true or false.

Another kind of algorithm – a verifier

Verifier

A verifier accepts as input:

Reminder: a solver is an algorithm that accepts an *instance* of a decision-problem and returns true or false.

Another kind of algorithm – a verifier

Verifier

A verifier accepts as input:

1. Some instance of the decision problem

Reminder: a solver is an algorithm that accepts an *instance* of a decision-problem and returns true or false.

Another kind of algorithm – a verifier

Verifier

A verifier accepts as input:

- 1. Some instance of the decision problem
- 2. Some sort of "proof" or *certificate* of why the solver made whatever decision it made on that instance.

The complexity class NP

Suppose that we have some decision problem X where...

► There exists some solver for X

The complexity class NP

Suppose that we have some decision problem X where...

- ► There exists some solver for X
- ► That solver says "yes" for some instance of X

The complexity class NP

Suppose that we have some decision problem X where...

- ► There exists some solver for X
- ► That solver says "yes" for some instance of X
- Whenever the solver says "yes", it also returns some sort of "proof" or certificate of why they said "yes".

The complexity class NP

Suppose that we have some decision problem X where...

- ► There exists some solver for X
- ► That solver says "yes" for some instance of X
- Whenever the solver says "yes", it also returns some sort of "proof" or certificate of why they said "yes".

If there exists a verifier that...

The complexity class NP

Suppose that we have some decision problem X where...

- ► There exists some solver for X
- ► That solver says "yes" for some instance of X
- Whenever the solver says "yes", it also returns some sort of "proof" or certificate of why they said "yes".

If there exists a verifier that...

When given the instance and the certificate, always agrees the correct answer was "yes"

The complexity class NP

Suppose that we have some decision problem X where...

- ► There exists some solver for X
- ► That solver says "yes" for some instance of X
- Whenever the solver says "yes", it also returns some sort of "proof" or *certificate* of why they said "yes".

If there exists a verifier that...

- ► When given the instance and the certificate, always agrees the correct answer was "yes"
- ► Always runs in polynomial time

The complexity class NP

Suppose that we have some decision problem X where...

- ► There exists some solver for X
- ► That solver says "yes" for some instance of X
- ► Whenever the solver says "yes", it also returns some sort of "proof" or *certificate* of why they said "yes".

If there exists a verifier that...

- ► When given the instance and the certificate, always agrees the correct answer was "yes"
- ► Always runs in polynomial time

...then X is in NP.

Important note: The verifier only needs to exist when the solver says "yes".

If the solver says "no", we don't care.

Important note: The verifier only needs to exist when the solver says "yes".

If the solver says "no", we don't care.

A related complexity class: co-NP. Almost identical to NP, except for "NO" instances.

The complexity class co-NP

Suppose that we have some decision problem X where...

► There exists some solver for X

The complexity class co-NP

Suppose that we have some decision problem X where...

- ► There exists some solver for X
- ► That solver says "no" for some instance of X

The complexity class co-NP

Suppose that we have some decision problem X where...

- ► There exists some solver for X
- ► That solver says "no" for some instance of X
- ► Whenever the solver says "no", it also returns some sort of "proof" or *certificate* of why they said "no".

The complexity class co-NP

Suppose that we have some decision problem X where...

- ► There exists some solver for X
- ► That solver says "no" for some instance of X
- Whenever the solver says "no", it also returns some sort of "proof" or certificate of why they said "no".

If there exists a verifier that...

The complexity class co-NP

Suppose that we have some decision problem X where...

- ► There exists some solver for X
- ► That solver says "no" for some instance of X
- Whenever the solver says "no", it also returns some sort of "proof" or certificate of why they said "no".

If there exists a verifier that...

▶ When given the instance and the certificate, always agrees the correct answer was "no"

The complexity class co-NP

Suppose that we have some decision problem X where...

- ► There exists some solver for X
- ► That solver says "no" for some instance of X
- Whenever the solver says "no", it also returns some sort of "proof" or certificate of why they said "no".

If there exists a verifier that...

- ▶ When given the instance and the certificate, always agrees the correct answer was "no"
- ► Always runs in polynomial time

The complexity class co-NP

Suppose that we have some decision problem X where...

- ► There exists some solver for X
- ► That solver says "no" for some instance of X
- ► Whenever the solver says "no", it also returns some sort of "proof" or *certificate* of why they said "no".

If there exists a verifier that...

- ▶ When given the instance and the certificate, always agrees the correct answer was "no"
- ► Always runs in polynomial time

...then X is in co-NP.

I claim that 3-COLOR is in NP. How do we show this?

I claim that 3-COLOR is in NP. How do we show this?

Step 1: Assume the preconditions are met.

I claim that 3-COLOR is in NP. How do we show this?

Step 1: Assume the preconditions are met.

Suppose we have a magical solver for 3-COLOR, and it says "yes" for some graph G.

I claim that 3-COLOR is in NP. How do we show this?

Step 1: Assume the preconditions are met.

Suppose we have a magical solver for 3-COLOR, and it says "yes" for some graph G.

Step 2: Show that we can build a polynomial-time verifier, given G and some certificate.

I claim that 3-COLOR is in NP. How do we show this?

Step 1: Assume the preconditions are met.

Suppose we have a magical solver for 3-COLOR, and it says "yes" for some graph G.

Step 2: Show that we can build a polynomial-time verifier, given G and some certificate.

Three things we must do:

1. How do we modify the solver so it returns a convincing certificate?

I claim that 3-COLOR is in NP. How do we show this?

Step 1: Assume the preconditions are met.

Suppose we have a magical solver for 3-COLOR, and it says "yes" for some graph G.

Step 2: Show that we can build a polynomial-time verifier, given G and some certificate.

Three things we must do:

- 1. How do we modify the solver so it returns a convincing certificate?
- 2. How do we check the certificate, whatever it is?

I claim that 3-COLOR is in NP. How do we show this?

Step 1: Assume the preconditions are met.

Suppose we have a magical solver for 3-COLOR, and it says "yes" for some graph G.

Step 2: Show that we can build a polynomial-time verifier, given G and some certificate.

Three things we must do:

- 1. How do we modify the solver so it returns a convincing certificate?
- 2. How do we check the certificate, whatever it is?
- 3. Does our verifier actually run in polynomial time?

Part 2a: What would be a convincing certificate?

Part 2a: What would be a convincing certificate?

A map of vertices to colors! E.g. $\{v_1 = \text{red}, v_2 = \text{blue}, v_3 = \text{red}, v_4 = \text{green}, \ldots\}.$

Part 2a: What would be a convincing certificate?

A map of vertices to colors! E.g. $\{v_1 = \text{red}, v_2 = \text{blue}, v_3 = \text{red}, v_4 = \text{green}, \ldots\}.$

Part 2b: How do we double-check this certificate?

Part 2a: What would be a convincing certificate?

A map of vertices to colors! E.g. $\{v_1 = \text{red}, v_2 = \text{blue}, v_3 = \text{red}, v_4 = \text{green}, \ldots\}.$

Part 2b: How do we double-check this certificate?

Loop through all vertices, make sure neighbors have diff colors!

Part 2a: What would be a convincing certificate?

```
A map of vertices to colors! E.g. \{v_1 = \text{red}, v_2 = \text{blue}, v_3 = \text{red}, v_4 = \text{green}, \ldots\}.
```

Part 2b: How do we double-check this certificate?

Loop through all vertices, make sure neighbors have diff colors!

Part 2a: What would be a convincing certificate?

```
A map of vertices to colors! E.g. \{v_1 = \text{red}, v_2 = \text{blue}, v_3 = \text{red}, v_4 = \text{green}, \ldots\}.
```

Part 2b: How do we double-check this certificate?

Loop through all vertices, make sure neighbors have diff colors!

```
boolean verify3Color(G, colorMap):
    for (v : G.vertices):
        for (w : v.neighbors):
            if (colorMap.get(v) == colorMap.get(w)):
                return false
    return true
```

Part 2c: Does this verifier run in polynomial time?

Part 2a: What would be a convincing certificate?

```
A map of vertices to colors! E.g. \{v_1 = \text{red}, v_2 = \text{blue}, v_3 = \text{red}, v_4 = \text{green}, \ldots\}.
```

Part 2b: How do we double-check this certificate?

Loop through all vertices, make sure neighbors have diff colors!

```
boolean verify3Color(G, colorMap):
    for (v : G.vertices):
        for (w : v.neighbors):
            if (colorMap.get(v) == colorMap.get(w)):
                return false
    return true
```

Part 2c: Does this verifier run in polynomial time?

Yes! It runs in $\mathcal{O}(|V| + |E|)$ time!

Part 2a: What would be a convincing certificate?

A map of vertices to colors! E.g.

$$\{v_1 = \text{red}, v_2 = \text{blue}, v_3 = \text{red}, v_4 = \text{green}, \ldots\}.$$

Part 2b: How do we double-check this certificate?

Loop through all vertices, make sure neighbors have diff colors!

```
Z-(OLOREP
boolean verify3Color(G, colorMap):
   for (v : G.vertices):
       for (w : v.neighbors):
           if (colorMap.get(v) == colorMap.get(w)):
              return false
   return true
```

Part 2c: Does this verifier run in polynomial time?

Yes! It runs in $\mathcal{O}(|V| + |E|)$ time!

So,
$$3$$
-COLOR \in NP.

Question: is CIRCUIT-SAT in NP?

Question: is CIRCUIT-SAT in NP?

CIRCUIT-SAT

Given a boolean expression such as "a && (b $\mid \mid$ c)" and the truth values for **some** of the variables, is there a way to set the remaining variables so that the output is T?

Question: is CIRCUIT-SAT in NP?

CIRCUIT-SAT

Given a boolean expression such as "a && (b || c)" and the truth values for **some** of the variables, is there a way to set the remaining variables so that the output is T?

As before, assume you have a magical solver, and it said "yes" for some boolean expression ${\cal B}.$

Question: is CIRCUIT-SAT in NP?

CIRCUIT-SAT

Given a boolean expression such as "a && (b $\mid \mid$ c)" and the truth values for **some** of the variables, is there a way to set the remaining variables so that the output is T?

As before, assume you have a magical solver, and it said "yes" for some boolean expression B.

Three questions to answer:

- 1. How do we modify the solver so it returns a convincing certificate?
- 2. How do we check the certificate, whatever it is?
- 3. Does our verifier actually run in polynomial time?