CSE 373: P vs NP

Michael Lee
Monday, Mar 5, 2018
Previously:

- We spent a lot of time learning how to solve problems
Previously:

- We spent a lot of time learning how to solve problems
- We spent a lot of time analyzing algorithms
Today:

- Take a step back and look at the bigger picture
Today:

- Take a step back and look at the bigger picture
- Discuss an important open question in computer science: does $P = NP$?
What is “efficiency”?

But first:

What does it mean for a problem to be “efficient”?

What is “efficiency”?

But first:
What does it mean for a problem to be “efficient”?

What do we even mean by “problem”, anyways?
What is a “decision problem”?

Decision problem

A decision problem is any arbitrary yes-or-no question on an infinite set of inputs.
What is a “decision problem”?

A decision problem is any arbitrary yes-or-no question on an infinite set of inputs.

Which of these are decision problems?

- **IS-PRIME**: “Is X prime? (Where X is some input)”
 - Yes, it's a yes-or-no question.

- **FIND-PRIME**: “What is the \(n \)-th prime number?”
 - No. The answer is a number, not a boolean.

- **SORT**: “Sort this list of numbers.”
 - No; not a question.

- **IS-SORTED**: “Is this list of numbers sorted?”
 - Yes, it’s a yes-or-no question.
What is a “decision problem”?

A decision problem is any arbitrary yes-or-no question on an infinite set of inputs.

Which of these are decision problems?

- **IS-PRIME**: “Is X prime? (Where X is some input)”
 Yes, it’s a yes-or-no question.

- **FIND-PRIME**: “What is the n-th prime number?”
 No. The answer is a number, not a boolean.

- **SORT**: “Sort this list of numbers.”
 No; not a question.

- **IS-SORTED**: “Is this list of numbers sorted?”
 Yes, it’s a yes-or-no question.
What is a “decision problem”?

Question: Why only talk about decision problems?

Answer: It simplifies things. Also, most problems can be turned into a decision problem with some tweaking, so not a big deal.

Example: SHORTEST-PATH: “What is the shortest path between two given nodes?”

...can be turned into: PATH: “Does there exist a path between two given nodes that consists of \(k \) edges?”
What is a “decision problem”?

Question: Why only talk about decision problems?

Answer: It simplifies things. Also, most problems can be turned into a decision problem with some tweaking, so not a big deal.
Question: Why only talk about decision problems?

Answer: It simplifies things. Also, most problems can be turned into a decision problem with some tweaking, so not a big deal.

Example:

SHORTEST-PATH: “What is the shortest path between two given nodes?”
What is a “decision problem”?

Question: Why only talk about decision problems?

Answer: It simplifies things. Also, most problems can be turned into a decision problem with some tweaking, so not a big deal.

Example:

SHORTEST-PATH: “What is the shortest path between two given nodes?”

...can be turned into:

PATH: “Does there exist a path between two given nodes that consists of k edges?”

$k = 1$
$k = 2$
$k = 3$
What is a “solvable” problem?

A decision problem is **solvable** if there exists some algorithm that given any input, or *instance*, can correctly *decide* “yes” or “no”.

Example:

IS-PRIME is solvable. Here’s an algorithm:

```java
boolean isPrimeSolver(n):
    for (int i = 2; i < n; i++):
        if (X % i == 0):
            return false
    return true
```
What is a “solvable” problem?

Solvable

A decision problem is **solvable** if there exists some algorithm that given any input, or *instance*, can correctly *decide* “yes” or “no”.

Example: **IS-PRIME** is solvable. Here’s an algorithm:

```java
boolean isPrimeSolver(n):
    for (int i = 2; i < n; i++)
        if (X % i == 0):
            return false
    return true
```
What is a “solvable” problem?

Question: Are there problems that are unsolvable – problems that are impossible to solve?
What is a “solvable” problem?

Question: Are there problems that are unsolvable – problems that are impossible to solve?

Surprisingly, yes.
What is a “solvable” problem?

Question: Are there problems that are unsolvable – problems that are impossible to solve?

Surprisingly, yes.

We won’t go into that today; look up the “halting problem” if you’re curious.
Questions:

- What do we even mean by “problem”, anyways?
Definitions

Questions:

- What do we even mean by “problem”, anyways?
- What does it mean for a problem to be “efficient”?
What is an “efficient algorithm”?

<table>
<thead>
<tr>
<th>Efficient algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>An algorithm is efficient if the worst-case bound is a polynomial.</td>
</tr>
</tbody>
</table>
What is an “efficient algorithm”?

Efficient algorithm

An algorithm is **efficient** if the worst-case bound is a **polynomial**.

Examples: which of these runtime bounds are “efficient”?

- $O(n^2)$: Yes, it's a polynomial.
What is an “efficient algorithm”?

Efficient algorithm

An algorithm is **efficient** if the worst-case bound is a **polynomial**.

Examples: which of these runtime bounds are “efficient”?

- \(\mathcal{O}(n^2) \): Yes, it’s a polynomial
What is an “efficient algorithm”?

Efficient algorithm

An algorithm is **efficient** if the worst-case bound is a **polynomial**.

Examples: which of these runtime bounds are “efficient”?

▶ $O(n^2)$: Yes, it’s a polynomial
▶ $O(2^n)$:

Technically yes...
What is an “efficient algorithm”?

Efficient algorithm

An algorithm is **efficient** if the worst-case bound is a **polynomial**.

Examples: which of these runtime bounds are “efficient”?

- $\mathcal{O}(n^2)$: Yes, it’s a polynomial
- $\mathcal{O}(2^n)$: No, it’s an exponential
What is an "efficient algorithm"?

Efficient algorithm

An algorithm is **efficient** if the worst-case bound is a **polynomial**.

Examples: which of these runtime bounds are “efficient”?

- $O(n^2)$: Yes, it’s a polynomial
- $O(2^n)$: No, it’s an exponential
- $O(n \log(n))$: Yes, $n \log(n) \in O(n^2)$, which is a polynomial
- $O(30000000000000000000000n^3)$: Technically yes...
- $O(2n)$: No, it’s an exponential
What is an “efficient algorithm”?

<table>
<thead>
<tr>
<th>Efficient algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>An algorithm is efficient if the worst-case bound is a polynomial.</td>
</tr>
</tbody>
</table>

Examples: which of these runtime bounds are “efficient”?

- **$O(n^2)$**: Yes, it’s a polynomial
- **$O(2^n)$**: No, it’s an exponential
- **$O(n \log(n))$**: Yes, $n \log(n) \in O(n^2)$, which is a polynomial
What is an “efficient algorithm”?

Efficient algorithm

An algorithm is **efficient** if the worst-case bound is a **polynomial**.

Examples: which of these runtime bounds are “efficient”?

- $O(n^2)$: Yes, it’s a polynomial
- $O(2^n)$: No, it’s an exponential
- $O(n \log(n))$: Yes, $n \log(n) \in O(n^2)$, which is a polynomial
- $O(n^{10000000})$: Technically yes...
What is an “efficient algorithm”?

Efficient algorithm

An algorithm is **efficient** if the worst-case bound is a **polynomial**.

Examples: which of these runtime bounds are “efficient”?

- $O(n^2)$: Yes, it’s a polynomial
- $O(2^n)$: No, it’s an exponential
- $O(n \log(n))$: Yes, $n \log(n) \in O(n^2)$, which is a polynomial
- $O(n^{10000000})$: Technically yes...
What is an “efficient algorithm”?

Efficient algorithm

An algorithm is *efficient* if the worst-case bound is a *polynomial*.

Examples: which of these runtime bounds are “efficient”?

- \(\mathcal{O}(n^2) \): Yes, it’s a polynomial
- \(\mathcal{O}(2^n) \): No, it’s an exponential
- \(\mathcal{O}(n \log(n)) \): Yes, \(n \log(n) \in \mathcal{O}(n^2) \), which is a polynomial
- \(\mathcal{O}(n^{10000000}) \): Technically yes...
- \(\mathcal{O}(300000000000000n^3) \): Technically yes...
What is an “efficient algorithm”?

Question: Are $n^{10000000}$ and $30000000000000n^3$ actually efficient in practice?
What is an “efficient algorithm”?

Question: Are $n^{10000000}$ and $30000000000000n^3$ actually efficient in practice?

No, but...
What is an “efficient algorithm”?

Question: Are $n^{10000000}$ and $3000000000000000n^3$ actually efficient in practice?

No, but...

- Once we find a polynomial algorithm to a problem, we’ve historically been able to improve it to something reasonable.
Question: Are $n^{10000000}$ and $30000000000000n^3$ actually efficient in practice?

No, but...

► Once we find a polynomial algorithm to a problem, we’ve historically been able to improve it to something reasonable.

► Finding a polynomial runtime is a *VERY* low bar. If we can’t even get that...
Examples of problems

Pretty much all problems we’ve studied have efficient solutions!
Examples of problems

Pretty much all problems we’ve studied have efficient solutions!

We’ve studied two main types of algorithms: sorting algorithms and graph algorithms, and every one we’ve looked at so far could run in polynomial time.

(e.g “How do I sort this list”, “What is the shortest path”, “What is the MST”...)
Great: do all solvable problems have efficient solutions?
Great: do all solvable problems have efficient solutions?

Haha, no.
Examples of problems

Great: do all solvable problems have efficient solutions?

Haha, no.

Well, ok – do all *practical* problems we actually care about have efficient solutions?
Great: do all solvable problems have efficient solutions?

Haha, no.

Well, ok – do all *practical* problems we actually care about have efficient solutions?

lol
PATH vs LONGEST-PATH

PATH
Given a graph and two vertices u and v, does there exist some path from u to v that visits exactly k edges?

▶ To solve, run BFS and see if we visit v in k steps.

▶ We can solve this efficiently!

LONGEST-PATH
Given a graph, does there exist a path between any two vertices that visits exactly k edges?

There is no known efficient solution to this problem.

To solve, use brute force.
PATH vs LONGEST-PATH

PATH

Given a graph and two vertices, does there exist some path between those two vertices that visits exactly k edges?

- To solve, run BFS and see if we visit the dest in k edges.
- We can solve this efficiently!

LONGEST-PATH

Given a graph, does there exist a path between any two vertices that visits exactly k edges?

There is no known efficient solution to this problem. To solve, use brute force.
PATH vs LONGEST-PATH

PATH
Given a graph and two vertices, does there exist some path between those two vertices that visits exactly \(k \) edges?

- To solve, run BFS and see if we visit the dest in \(k \) edges.
- We can solve this efficiently!

What if we tweak the problem a little?
PATH vs LONGEST-PATH

PATH
Given a graph and two vertices, does there exist some path between those two vertices that visits exactly \(k \) edges?

- To solve, run BFS and see if we visit the dest in \(k \) edges.
- We can solve this efficiently!

What if we tweak the problem a little?

LONGEST-PATH
Given a graph, does there exist a path between **any** two vertices that visits exactly \(k \) edges?
PATH vs LONGEST-PATH

PATH
Given a graph and two vertices, does there exist some path between those two vertices that visits exactly k edges?

- To solve, run BFS and see if we visit the dest in k edges.
- We can solve this efficiently!

What if we tweak the problem a little?

LONGEST-PATH
Given a graph, does there exist a path between any two vertices that visits exactly k edges?

There is no known efficient solution to this problem.
To solve, use brute force.
2-COLOR vs 3-COLOR

2-COLOR
Given a graph, is it possible to assign each node one of two colors such that no two adjacent nodes share the same color?

- To solve, run BFS or DFS, alternate colors...
- We can solve this efficiently!

3-COLOR
Given a graph, is it possible to assign each node one of three colors such that no two adjacent nodes share the same color?

There is no known efficient solution to this problem.
To solve, use brute force: try all $O(3^{|V|})$ combinations.
2-COLOR vs 3-COLOR

2-COLOR
Given a graph, is it possible to assign each node one of two colors such that no two adjacent nodes share the same color?

- To solve, run BFS or DFS, alternate colors...
- We can solve this efficiently!

What if we tweak the problem a little?
2-COLOR vs 3-COLOR

<table>
<thead>
<tr>
<th>2-COLOR</th>
<th>Given a graph, is it possible to assign each node one of two colors such that no two adjacent nodes share the same color?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>▶ To solve, run BFS or DFS, alternate colors...</td>
</tr>
<tr>
<td></td>
<td>▶ We can solve this efficiently!</td>
</tr>
</tbody>
</table>

What if we tweak the problem a little?

<table>
<thead>
<tr>
<th>3-COLOR</th>
<th>Given a graph, is it possible to assign each node one of three colors such that no two adjacent nodes share the same color?</th>
</tr>
</thead>
</table>
2-COLOR vs 3-COLOR

2-COLOR
Given a graph, is it possible to assign each node one of two colors such that no two adjacent nodes share the same color?

▶ To solve, run BFS or DFS, alternate colors...
▶ We can solve this efficiently!

What if we tweak the problem a little?

3-COLOR
Given a graph, is it possible to assign each node one of three colors such that no two adjacent nodes share the same color?”

There is no known efficient solution to this problem.
To solve, use brute force: try all $O\left(3^{|V|}\right)$ combinations.
CIRCUIT-VALUE vs CIRCUIT-SAT

CIRCUIT-VALUE

<table>
<thead>
<tr>
<th></th>
<th>F</th>
<th>T</th>
</tr>
</thead>
</table>

Given a boolean expression such as “a && (b || c)” and the truth values for every variable, is the final expression T?

To solve, convert into an abstract syntax tree and evaluate.

We can solve this efficiently!

CIRCUIT-SAT

Given a boolean expression such as “a && (b || c)” and the truth values for some of the variables, is there a way to set the remaining variables so that the output is T?

There is no known efficient solution to this problem.

To solve, use brute force: try every combination of variables.
CIRCUIT-VALUE vs CIRCUIT-SAT

CIRCUIT-VALUE

Given a boolean expression such as “a && (b || c)” and the truth values for every variable, is the final expression T?

- To solve, convert into an abstract syntax tree and evaluate.
- We can solve this efficiently!

CIRCUIT-SAT

Given a boolean expression such as “a && (b || c)” and the truth values for some of the variables, is there a way to set the remaining variables so that the output is T?

There is no known efficient solution to this problem. To solve, use brute force: try every combination of variables.
CIRCUIT-VALUE vs CIRCUIT-SAT

CIRCUIT-VALUE

Given a boolean expression such as “a && (b || c)” and the truth values for every variable, is the final expression T?

- To solve, convert into an abstract syntax tree and evaluate.
- We can solve this efficiently!

CIRCUIT-SAT

Given a boolean expression such as “a && (b || c)” and the truth values for some of the variables, is there a way to set the remaining variables so that the output is T?
CIRCUIT-VALUE vs CIRCUIT-SAT

CIRCUIT-VALUE
Given a boolean expression such as “a && (b || c)” and the truth values for every variable, is the final expression T?

- To solve, convert into an abstract syntax tree and evaluate.
- We can solve this efficiently!

CIRCUIT-SAT
Given a boolean expression such as “a && (b || c)” and the truth values for some of the variables, is there a way to set the remaining variables so that the output is T?

There is no known efficient solution to this problem.
To solve, use brute force: try every combination of variables.
Observation: Some problems have polynomial solutions, some have worse.

Can we formalize this?
Observation: Some problems have polynomial solutions, some have worse.

Can we formalize this?

Complexity class

A *complexity class* is a set of problems limited by some resource constraint (time, space, etc)
The complexity class P

P is the set of all decision problems where there exists an algorithm that can solve all inputs in worst-case polynomial time.
The complexity class P

P is the set of all decision problems where there exists an algorithm that can solve all inputs in worst-case polynomial time.

Examples: IS-PRIME, IS-SORTED, PATH, 2-COLOR, CIRCUIT-VALUE, ...
The complexity class P

P is the set of all decision problems where there exists an algorithm that can solve all inputs in worst-case polynomial time.

Examples: IS-PRIME, IS-SORTED, PATH, 2-COLOR, CIRCUIT-VALUE, ...

The complexity class EXP

EXP is the set of all decision problems where there exists an algorithm that can solve all inputs in worst-case exponential time.

Examples: LONGEST-PATH, 3-COLOR, CIRCUIT-SAT...
Question: Suppose we have some random decision problem in P. Is that problem also in EXP?

E.g. is 2-COLOR in EXP?
Is P a subset of EXP?

There are three reasonable possibilities:

Answer 1: The sets are disjoint
E.g. if a problem is in P, it’s not in EXP.

Answer 2: The sets overlap
E.g. some, but not all problems in P are in EXP.

Answer 3: P is a subset of EXP
All problems in P are also in EXP.

Is P a subset of EXP?

There are three reasonable possibilities:

Answer 1: The sets are disjoint
E.g. if a problem is in P, it’s not in EXP.

Answer 2: The sets overlap
E.g. some, but not all problems in P are in EXP.
Is P a subset of EXP?

There are three reasonable possibilities:

Answer 1: The sets are disjoint
E.g. if a problem is in P, it’s not in EXP.

Answer 2: The sets overlap
E.g. some, but not all problems in P are in EXP

Answer 3: P is a subset of EXP
All problems in P are also in EXP
Is P a subset of EXP?

It turns out it’s answer 3: P is a subset of EXP.

Answer 3: P is a subset of EXP

All problems in P are also in EXP.
It turns out it’s answer 3: P is a subset of EXP.

Answer 3: P is a subset of EXP

All problems in P are also in EXP

Reason: EXP is the set of decision problems where there exists an algorithm that solves the problem in *worst-case exponential time*.
Is P a subset of EXP?

It turns out it’s answer 3: P is a subset of EXP.

Answer 3: P is a subset of EXP

All problems in P are also in EXP

Reason: EXP is the set of decision problems where there exists an algorithm that solves the problem in *worst-case exponential time*. So, if we can find a polynomial-time algorithm to a problem, we can definitely find an exponential one!
Example: We previously showed there exists an $\mathcal{O}(n)$ algorithm to check if a number n is prime:

```java
boolean isPrimeSolver(n):
    for (int i = 2; i < n; i++):
        if (X % i == 0):
            return false
    return true
```

So IS-PRIME \in P.
Is P a subset of EXP?

Example: We previously showed there exists an $O(n)$ algorithm to check if a number n is prime:

```java
boolean isPrimeSolver(n):
    for (int i = 2; i < n; i++):
        if (X % i == 0):
            return false
    return true
```

So IS-PRIME \in P.

How do we show that IS-PRIME is in EXP?
Example: We previously showed there exists an $O(n)$ algorithm to check if a number n is prime:

```java
boolean isPrimeSolver(n):
    for (int i = 2; i < n; i++):
        if (X % i == 0):
            return false
    return true
```

So IS-PRIME $\in P$.

How do we show that IS-PRIME is in EXP?

```java
boolean isPrimeSolver2(n):
    for (int i = 0; i < Math.pow(2, n); i++):
        print("lol")
    return isPrimeSolver(n)
```

This runs in exponential time and correctly solves all inputs. So IS-PRIME is also in EXP.
To recap:

- What is a decision problem?
To recap:

- What is a decision problem?
 - What does it mean to “solve” a decision problem?
To recap:

- What is a decision problem?
 - What does it mean to “solve” a decision problem?
 - What does it mean for an algorithm to be “efficient”?
Recap

To recap:

- What is a decision problem?
 - What does it mean to “solve” a decision problem?
 - What does it mean for an algorithm to be “efficient”?
- What is a complexity class?

P is a subset of EXP

Unfortunately, some problems we care about are in EXP
Recap

To recap:

- What is a decision problem?
 - What does it mean to “solve” a decision problem?
 - What does it mean for an algorithm to be “efficient”?

- What is a complexity class?
 - P
To recap:

- What is a decision problem?
 - What does it mean to “solve” a decision problem?
 - What does it mean for an algorithm to be “efficient”?

- What is a complexity class?
 - P
 - EXP

P is a subset of EXP

Unfortunately, some problems we care about are in EXP
To recap:

▶ What is a decision problem?
 ▶ What does it mean to “solve” a decision problem?
 ▶ What does it mean for an algorithm to be “efficient”?

▶ What is a complexity class?
 ▶ P
 ▶ EXP
 ▶ P is a subset of EXP

Unfortunately, some problems we care about are in EXP.
To recap:

- What is a decision problem?
 - What does it mean to “solve” a decision problem?
 - What does it mean for an algorithm to be “efficient”?

- What is a complexity class?
 - P
 - EXP
 - P is a subset of EXP

- Unfortunately, some problems we care about are in EXP
Observation: Some problems in EXP have an interesting property:
Observation: Some problems in EXP have an interesting property:

- They may take either polynomial or exponential time to solve, but either way...
A glimmer of hope...

Observation: Some problems in EXP have an interesting property:

- They may take either polynomial or exponential time to *solve*, but either way...
- *Checking or verifying* if a solution is correct always takes polynomial time!
A glimmer of hope...

Observation: Some problems in EXP have an interesting property:

- They may take either polynomial or exponential time to solve, but either way...
- *Checking or verifying* if a solution is correct always takes polynomial time!

Big idea: NP is the set of decision problems that can be verified in polynomial time.
A glimmer of hope...

Observation: Some problems in EXP have an interesting property:

- They may take either polynomial or exponential time to solve, but either way...
- *Checking or verifying* if a solution is correct always takes polynomial time!

Big idea: NP is the set of decision problems that can be verified in polynomial time.

If we can *verify* answers efficiently, can we *find* answers efficiently?
Reminder: a solver is an algorithm that accepts an *instance* of a decision-problem and returns true or false.
Reminder: a solver is an algorithm that accepts an instance of a decision-problem and returns true or false.

Another kind of algorithm – a verifier
Reminder: a solver is an algorithm that accepts an instance of a decision-problem and returns true or false.

Another kind of algorithm – a verifier

Verifier

A verifier accepts as input:
Reminder: a solver is an algorithm that accepts an instance of a decision-problem and returns true or false.

Another kind of algorithm – a verifier

Verifier

A verifier accepts as input:

1. Some instance of the decision problem
Reminder: a solver is an algorithm that accepts an *instance* of a decision-problem and returns true or false.

Another kind of algorithm – a *verifier*

<table>
<thead>
<tr>
<th>Verifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>A verifier accepts as input:</td>
</tr>
<tr>
<td>1. Some instance of the decision problem</td>
</tr>
<tr>
<td>2. Some sort of “proof” or certificate of why the solver made whatever decision it made on that instance.</td>
</tr>
</tbody>
</table>
The complexity class NP

Suppose that we have some decision problem X where...

- There exists some solver for X

- That solver says "yes" for some instance of X

- Whenever the solver says "yes", it also returns some sort of "proof" or certificate of why they said "yes".

- If there exists a verifier that...
 - When given the instance and the certificate, always agrees the correct answer was "yes"
 - Always runs in polynomial time

...then X is in NP.
The complexity class NP

Suppose that we have some decision problem X where...

- There exists some solver for X
- That solver says “yes” for some instance of X
The complexity class NP

Suppose that we have some decision problem X where...

- There exists some solver for X
- That solver says "yes" for some instance of X
- Whenever the solver says "yes", it also returns some sort of "proof" or *certificate* of why they said "yes".

If there exists a verifier that...

- When given the instance and the certificate, always agrees the correct answer was "yes"
- Always runs in polynomial time

...then X is in NP.

26
The complexity class NP

Suppose that we have some decision problem X where...

- There exists some solver for X
- That solver says “yes” for some instance of X
- Whenever the solver says “yes”, it also returns some sort of “proof” or certificate of why they said “yes”.

If there exists a verifier that...
The complexity class NP

Suppose that we have some decision problem X where...

- There exists some solver for X
- That solver says “yes” for some instance of X
- Whenever the solver says “yes”, it also returns some sort of “proof” or certificate of why they said “yes”.

If there exists a verifier that...

- When given the instance and the certificate, always agrees the correct answer was “yes”
The complexity class NP

Suppose that we have some decision problem X where...

- There exists some solver for X
- That solver says “yes” for some instance of X
- Whenever the solver says “yes”, it also returns some sort of “proof” or certificate of why they said “yes”.

If there exists a verifier that...

- When given the instance and the certificate, always agrees the correct answer was “yes”
- Always runs in polynomial time
Suppose that we have some decision problem X where...

- There exists some solver for X
- That solver says “yes” for some instance of X
- Whenever the solver says “yes”, it also returns some sort of “proof” or certificate of why they said “yes”.

If there exists a verifier that...

- When given the instance and the certificate, always agrees the correct answer was “yes”
- Always runs in polynomial time

...then X is in NP.
Important note: The verifier only needs to exist when the solver says “yes”.
If the solver says “no”, we don’t care.
The complexity class co-NP

Important note: The verifier only needs to exist when the solver says “yes”.

If the solver says “no”, we don’t care.

A related complexity class: co-NP. Almost identical to NP, except for “NO” instances.
The complexity class co-NP

Suppose that we have some decision problem X where...

- There exists some solver for X

...then X is in co-NP.
The complexity class co-NP

Suppose that we have some decision problem \(X \) where...

- There exists some solver for \(X \)
- That solver says “no” for some instance of \(X \)

...then \(X \) is in co-NP.
The complexity class co-NP

<table>
<thead>
<tr>
<th>The complexity class co-NP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suppose that we have some decision problem X where...</td>
</tr>
<tr>
<td>▶ There exists some solver for X</td>
</tr>
<tr>
<td>▶ That solver says “no” for some instance of X</td>
</tr>
<tr>
<td>▶ Whenever the solver says “no”, it also returns some sort of “proof” or certificate of why they said “no”.</td>
</tr>
</tbody>
</table>
The complexity class co-NP

Suppose that we have some decision problem X where...

- There exists some solver for X
- That solver says "no" for some instance of X
- Whenever the solver says "no", it also returns some sort of "proof" or certificate of why they said "no".

If there exists a verifier that...
The complexity class co-NP

Suppose that we have some decision problem X where...

- There exists some solver for X
- That solver says “no” for some instance of X
- Whenever the solver says “no”, it also returns some sort of “proof” or certificate of why they said “no”.

If there exists a verifier that...

- When given the instance and the certificate, always agrees the correct answer was “no”
The complexity class co-NP

Suppose that we have some decision problem X where...

- There exists some solver for X
- That solver says “no” for some instance of X
- Whenever the solver says “no”, it also returns some sort of “proof” or certificate of why they said “no”.

If there exists a verifier that...

- When given the instance and the certificate, always agrees the correct answer was “no”
- Always runs in polynomial time
The complexity class co-NP

Suppose that we have some decision problem X where...

- There exists some solver for X
- That solver says “no” for some instance of X
- Whenever the solver says “no”, it also returns some sort of “proof” or certificate of why they said “no”.

If there exists a verifier that...

- When given the instance and the certificate, always agrees the correct answer was “no”
- Always runs in polynomial time

...then X is in co-NP.
Example: showing 3-COLOR is in NP

I claim that 3-COLOR is in NP. How do we show this?

Step 1: Assume the preconditions are met. Suppose we have a magical solver for 3-COLOR, and it says "yes" for some graph G.

Step 2: Show that we can build a polynomial-time verifier, given G and some certificate. Three things we must do:

1. How do we modify the solver so it returns a convincing certificate?
2. How do we check the certificate, whatever it is?
3. Does our verifier actually run in polynomial time?
I claim that 3-COLOR is in NP. How do we show this?

Step 1: Assume the preconditions are met.
I claim that 3-COLOR is in NP. How do we show this?

Step 1: Assume the preconditions are met.

Suppose we have a magical solver for 3-COLOR, and it says “yes” for some graph G.

Example: showing 3-COLOR is in NP
I claim that 3-COLOR is in NP. How do we show this?

Step 1: Assume the preconditions are met.

Suppose we have a magical solver for 3-COLOR, and it says “yes” for some graph G.

Step 2: Show that we can build a polynomial-time verifier, given G and some certificate.
I claim that 3-COLOR is in NP. How do we show this?

Step 1: Assume the preconditions are met.

Suppose we have a magical solver for 3-COLOR, and it says “yes” for some graph G.

Step 2: Show that we can build a polynomial-time verifier, given G and some certificate.

Three things we must do:

1. How do we modify the solver so it returns a convincing certificate?
I claim that 3-COLOR is in NP. How do we show this?

Step 1: Assume the preconditions are met.

Suppose we have a magical solver for 3-COLOR, and it says “yes” for some graph G.

Step 2: Show that we can build a polynomial-time verifier, given G and some certificate.

Three things we must do:

1. How do we modify the solver so it returns a convincing certificate?
2. How do we check the certificate, whatever it is?
I claim that 3-COLOR is in NP. How do we show this?

Step 1: Assume the preconditions are met.

Suppose we have a magical solver for 3-COLOR, and it says “yes” for some graph G.

Step 2: Show that we can build a polynomial-time verifier, given G and some certificate.

Three things we must do:

1. How do we modify the solver so it returns a convincing certificate?
2. How do we check the certificate, whatever it is?
3. Does our verifier actually run in polynomial time?
Example: showing 3-COLOR is in NP

Part 2a: What would be a convincing certificate?

A map of vertices to colors! E.g.

```
{v_1 = red, v_2 = blue, v_3 = red, v_4 = green, ...}
```

Part 2b: How do we double-check this certificate?

Loop through all vertices, make sure neighbors have different colors!

```
boolean verify3Color(G, colorMap):
    for (v : G.vertices):
        for (w : v.neighbors):
            if (colorMap.get(v) == colorMap.get(w)):
                return false
    return true
```

Part 2c: Does this verifier run in polynomial time?

Yes! It runs in $O(|V| + |E|)$ time!

So, 3-COLOR ∈ NP.
Part 2a: What would be a convincing certificate?

A map of vertices to colors! E.g.
{\(v_1 = \text{red}, v_2 = \text{blue}, v_3 = \text{red}, v_4 = \text{green}, \ldots\)}.
Part 2a: What would be a convincing certificate?

A map of vertices to colors! E.g.
\{v_1 = \text{red}, v_2 = \text{blue}, v_3 = \text{red}, v_4 = \text{green}, \ldots \}.

Part 2b: How do we double-check this certificate?
Part 2a: What would be a convincing certificate?

A map of vertices to colors! E.g.
\{v_1 = \text{red}, v_2 = \text{blue}, v_3 = \text{red}, v_4 = \text{green}, \ldots \}\.

Part 2b: How do we double-check this certificate?

Loop through all vertices, make sure neighbors have diff colors!
Example: showing 3-COLOR is in NP

Part 2a: What would be a convincing certificate?

A map of vertices to colors! E.g.
\[\{ v_1 = \text{red}, v_2 = \text{blue}, v_3 = \text{red}, v_4 = \text{green}, \ldots \} \].

Part 2b: How do we double-check this certificate?

Loop through all vertices, make sure neighbors have diff colors!

```java
boolean verify3Color(G, colorMap):
    for (v : G.vertices):
        for (w : v.neighbors):
            if (colorMap.get(v) == colorMap.get(w)):
                return false
        return true
```

Part 2c: Does this verifier run in polynomial time?

Yes! It runs in \(O(|V| + |E|) \) time!

So, 3-COLOR \(\in \text{NP} \).
Example: showing 3-COLOR is in NP

Part 2a: What would be a convincing certificate?

A map of vertices to colors! E.g.
\{v_1 = \text{red}, v_2 = \text{blue}, v_3 = \text{red}, v_4 = \text{green}, \ldots \}.

Part 2b: How do we double-check this certificate?

Loop through all vertices, make sure neighbors have diff colors!

\begin{verbatim}
boolean verify3Color(G, colorMap):
 for (v : G.vertices):
 for (w : v.neighbors):
 if (colorMap.get(v) == colorMap.get(w)):
 return false
 return true
\end{verbatim}

Part 2c: Does this verifier run in polynomial time?

Yes! It runs in $O(|V| + |E|)$ time!

So, 3-COLOR \in NP.
Example: showing 3-COLOR is in NP

Part 2a: What would be a convincing certificate?

A map of vertices to colors! E.g.
{\(v_1 = \text{red}, v_2 = \text{blue}, v_3 = \text{red}, v_4 = \text{green}, \ldots\)}.

Part 2b: How do we double-check this certificate?

Loop through all vertices, make sure neighbors have diff colors!

```java
boolean verify3Color(G, colorMap):
    for (v : G.vertices):
        for (w : v.neighbors):
            if (colorMap.get(v) == colorMap.get(w)):
                return false
    return true
```

Part 2c: Does this verifier run in polynomial time?

Yes! It runs in \(O(|V| + |E|)\) time!
Part 2a: What would be a convincing certificate?

A map of vertices to colors! E.g. \(\{v_1 = \text{red}, v_2 = \text{blue}, v_3 = \text{red}, v_4 = \text{green}, \ldots\}\).

Part 2b: How do we double-check this certificate?

Loop through all vertices, make sure neighbors have diff colors!

```java
boolean verify3Color(G, colorMap):
   for (v : G.vertices):
      for (w : v.neighbors):
         if (colorMap.get(v) == colorMap.get(w)):
            return false
   return true
```

Part 2c: Does this verifier run in polynomial time?

Yes! It runs in \(O(|V| + |E|)\) time!

So, \(3\text{-COLOR} \in \text{NP}\).
Example: showing CIRCUIT-SAT is in NP

Question: is CIRCUIT-SAT in NP?
Example: showing CIRCUIT-SAT is in NP

Question: is CIRCUIT-SAT in NP?

<table>
<thead>
<tr>
<th>CIRCUIT-SAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Given a boolean expression such as “a && (b</td>
</tr>
</tbody>
</table>
Question: is CIRCUIT-SAT in NP?

CIRCUIT-SAT

Given a boolean expression such as “a && (b || c)” and the truth values for some of the variables, is there a way to set the remaining variables so that the output is T?

As before, assume you have a magical solver, and it said “yes” for some boolean expression B.
Question: is CIRCUIT-SAT in NP?

CIRCUIT-SAT

Given a boolean expression such as “a && (b || c)” and the truth values for some of the variables, is there a way to set the remaining variables so that the output is T?

As before, assume you have a magical solver, and it said “yes” for some boolean expression B.

Three questions to answer:

1. How do we modify the solver so it returns a convincing certificate?
2. How do we check the certificate, whatever it is?
3. Does our verifier actually run in polynomial time?