
CSE 373: Disjoint sets continued

Michael Lee
Friday, Mar 2, 2018

1

Warmup

Consider the following disjoint set.

What happens if we run findSet(8) then union(4, 17)?

Note: the union(...) method internally calls findSet(...).

0 1

2

3 4 5

6

7

8 9

10

11

12

13 14

15

16 17

18

r=0 r=3 r=3

2

Warmup

What happens when we run findSet(8)?

0 1

2

3 4 5

6

7

8 9

10

11

12

13 14

15

16 17

18

r=0 r=3 r=3

Step 1: We find the node corresponding to 8 in O (1) time

0 1

2

3 4 5

6

10

7

9

8

11

12

13 14

15

16 17

18

r=0 r=3 r=3

Step 3: We move each node we passed by (every red node) to
point directly at the root.

Note: we do not update the rank (too expensive)

3

Warmup

What happens when we run findSet(8)?

0 1

2

3 4 5

6

7

8 9

10

11

12

13 14

15

16 17

18

r=0 r=3 r=3

Step 2: We travel up the tree until we find the root

0 1

2

3 4 5

6

10

7

9

8

11

12

13 14

15

16 17

18

r=0 r=3 r=3

Step 3: We move each node we passed by (every red node) to
point directly at the root.

Note: we do not update the rank (too expensive)

3

Warmup

What happens when we run findSet(8)?

0 1

2

3 4 5

6

10

7

9

8

11

12

13 14

15

16 17

18

r=0 r=3 r=3

Step 3: We move each node we passed by (every red node) to
point directly at the root.

Note: we do not update the rank (too expensive)
3

Warmup

What happens if we run union(4, 17)?

0 1

2

3 4 5

6

10

7

9

8

11

12

13 14

15

16 17

18

r=0 r=3 r=3

4

Warmup

What happens if we run union(4, 17)?

0 1

2

3 4 5

6

10

7

9

8

11

12

13 14

15

16 17

18

r=0 r=3 r=3

Step 1: We first run findSet(4)

4

Warmup

What happens if we run union(4, 17)?

0 1

2

3 4 5

6

10

7

9

8

11

12

13 14

15

16 17

18

r=0 r=3 r=3

Step 1: We first run findSet(4).

So we need to crawl up and find the parent...

4

Warmup

What happens if we run union(4, 17)?

0 1

2

3 5

4 6

10

7

9

8

11

12

13 14

15

16 17

18

r=0 r=3 r=3

Step 1: We first run findSet(4).

So we need to crawl up and find the parent...

...and make node “4” point directly at the root.
4

Warmup

What happens if we run union(4, 17)?

0 1

2

3 5

4 6

10

7

9

8

11

12

13 14

15

16 17

18

r=0 r=3 r=3

Step 2: We next run findSet(17) and repeat the process.

4

Warmup

What happens if we run union(4, 17)?

0 1

2

3 5

4 6

10

7

9

8

11

12

13 14

15

16 17

18

r=0 r=3 r=3

Step 2: We next run findSet(17) and repeat the process.

4

Warmup

What happens if we run union(4, 17)?

0 1

2

3 5

4 6

10

7

9

8

11

12

13 14

15

16

17

18

r=0 r=3 r=3

Step 2: We next run findSet(17) and repeat the process.

4

Warmup

We’ve finished findSet(4) and findSet(17), so now we need to
finish the rest of union(4, 17) by linking the two trees together.

0 1

2

3 5

4 6

10

7

9

8

11

12

13 14

15

16

17

18

r=0 r=3 r=3

5

Warmup

We’ve finished findSet(4) and findSet(17), so now we need to
finish the rest of union(4, 17) by linking the two trees together.

0 1

2

3 5

4 6

10

7

9

8

11

12

13 14

15

16

17

18

r=0 r=3 r=3

The ranks are the same, so we arbitrarily make set 1 the root and
make set 11 the child.

5

Warmup

We’ve finished findSet(4) and findSet(17), so now we need to
finish the rest of union(4, 17) by linking the two trees together.

0 1

2

3 5

4 6

10

7

9

8 11

12

13 14

15

16

17

18

r=0 r=4

We then update the rank of set 1 and “forget” the rank of set 11.

5

Path compression: runtime

Now, what are the worst-case and best-case runtime of the
following?

I makeSet(x):
O (1) – still the same

I findSet(x):
In the best case, O (1), in the worst case O (log(n))

I union(x, y):
In the best case, O (1), in the worst case O (log(n))

6

Back to Kruskal’s

Why are we doing this? To help us implement Kruskal’s algorithm:
def kruskal():

for (v : vertices):

makeMST(v)

sort edges in ascending order by their weight

mst = new SomeSet<Edge>()

for (edge : edges):

if findMST(edge.src) != findMST(edge.dst):

union(edge.src, edge.dst)

mst.add(edge)

return mst

I makeMST(v) takes O (tm) time
I findMST(v): takes O (tf) time
I union(u, v): takes O (tu) time

7

Back to Kruskal’s

We concluded that the runtime is:

O

|V | · tm︸ ︷︷ ︸
setup

+ |E |·log(|E |)︸ ︷︷ ︸
sorting edges

+ |E |·tf + |V |·tu︸ ︷︷ ︸
core loop


Well, we just said that in the worst case:

I tm ∈ O (1)

I tf ∈ O (log(|V |))
I tu ∈ O (log(|V |))

So the worst-case overall runtime of Kruskal’s is:

O (|V |+ |E |·log(|E |) + (|E |+ |V |)·log(|V |))

8

Back to Kruskal’s

Our worst-case runtime:

O (|V |+ |E |·log(|E |) + (|E |+ |V |)·log(|V |))

One minor improvement: since our edge weights are numbers, we
can likely use a linear sort and improve the runtime to:

O (|V |+ |E |+ (|E |+ |V |)·log(|V |))

We can drop the |V |+ |E | (they’re dominated by the last term):

O (|E |+ |V |)·log(|V |))

...and we’re left with something that’s basically the same as Prim.

9

Disjoint-sets, amortized analysis

...or are we?

Observation: each call to findSet(x) improves all future calls.
How much of a difference does that make?

Interesting result:

It turns out union and find are amortized log∗(n).

10

Disjoint-sets, amortized analysis

Iterated log
The expression log∗b(n) is equivalent to the number of times we
repeatedly compute logb(x) to bring x down to at most 1.

What does this mean?

11

Interlude: repeated exponentiation

Observation:

I Multiplication is a shorthand for repeated addition*

2× 5 = 2 + 2 + 2 + 2

I Exponentiation is a shorthand for repeated multiplication*

25 = 2× 2× 2× 2× 2

I Is there a way of expressing repeated exponentiation?

2 ?? 5 = 22
22

2

I Why stop there – is there a way of expressing repeated
whatever-it-is-we-did up above?

2 ??!!??? 5 = 2 ?? 2 ?? 2 ?? 2 ?? 2

*assuming we use only integers 12

Interlude: Knuth’s up-arrow notation

Yes – it’s called Knuth’s up-arrow notation

I Repeated addition (multiplication) is still the same:

2× 5 = 2 + 2 + 2 + 2

I A single arrow means repeated multiplication – exponentiation

2 ↑ 5 = 2× 2× 2× 2× 2 = 25 = 16

I Two arrows means repeated exponentiation – tetration

2 ↑↑ 5 = 2 ↑ 2 ↑ 2 ↑ 2 ↑ 2 = 22
22

2

I Three arrows means repeated tetration

2 ↑↑↑ 5 = 2 ↑↑ 2 ↑↑ 2 ↑↑ 2 ↑↑ 2

I etc...

13

Interlude: Knuth’s up-arrow notation

These functions all also have inverses

I Division is the inverse of multiplication:

(2× 5)

2
= 5

I log(...) is the inverse of ↑ (exponentiation)

log2(2 ↑ 5) = log2(25) = 5

I log∗(...) is the inverse of ↑↑ (tetration)

log∗2(2 ↑↑ 5) = log∗2(22
22

2

) = 5

14

Up-arrows and iterated log

A slightly modified definition:
Iterated log
The expression log∗b(n) is equivalent to the number of times we
repeatedly compute logb(x) to bring x down to at most 1.

This is equivalent to the inverse of b ↑↑ x .

What does this look like?

I log∗(2 ↑↑ 1) = log ∗(2) = log(2) = 1

I log∗(2 ↑↑ 2) = log∗(22) = log(log(4)) = 2

I log∗(2 ↑↑ 3) = log∗(222) = log(log(log(8))) = 3

I log∗(2 ↑↑ 4) = log∗(222
2

) = log(log(log(log(65536)))) = 4

I log∗(2 ↑↑ 5) = log∗(222
22

) =

log(log(log(log(log(265536))))) = 5
15

A big number

And what exactly is 265536?

= 2003529930406846464979072351560255750447825475569751419
2650169737108940595563114530895061308809333481010382343429072
6318182294938211881266886950636476154702916504187191635158796
6347219442930927982084309104855990570159318959639524863372367
2030029169695921561087649488892540908059114570376752085002066
7156370236612635974714480711177481588091413574272096719015183
6282560618091458852699826141425030123391108273603843767876449
0432059603791244909057075603140350761625624760318637931264847
0374378295497561377098160461441330869211810248595915238019533
1030292162800160568670105651646750568038741529463842244845292
5373614425336143737290883037946012747249584148649159306472520
1515569392262818069165079638106413227530726714399815850881129
2628901134237782705567421080070065283963322155077831214288551 16

A big number

Note: in the interests of saving space, the handouts only contain
the first 800 or so digits of the number.

We’ve omitted the remaining digits, which take up an additional
20 slides.

17

A big number

If we count, 2 ↑↑ 5 has 19729 digits!

And yet, log∗(2 ↑↑ 5) equals just 5!

Punchline? log∗(n) ≤ 5, for basically any reasonable value of n.

Runtime of Kruskal?

O ((|E |+ |V |) log∗(|V |)) ≤ O ((|E |+ |V |)5) ≈ O (|E |+ |V |)

38

Inverse of the Ackermann function

But wait!

Somebody then came along and proved an even tighter bound. It
turns out findSet(...) and union(...) are amortized O (α(n))
– the inverse of the Ackermann function.

39

The Ackermann function

The Ackermann function is a recursive function designed to grow
extremely quickly:

A(m, n) =


n + 1 if m = 0

A(m − 1, 1) if m > 0 and n = 0

A(m − 1,A(m, n − 1)) if m > 0 and n > 0

This function grows even more quickly then m ↑↑ n – this means
the inverse Ackermann function α(...) grows even more slowly then
log∗(...)!

So, the runtime of Kruskal’s is even better! It’s

O ((|E |+ |V |)α(|V |)) ≤ O ((|E |+ |V |)4)

...for any practical size of |V |.
40

Are we done yet?

But wait, there’s more!

41

Recap

To recap, we found that the runtimes of findSet(...) and
union(...) were...

I Originally O (n)
I After applying union-by-rank, O (log(n))
I After applying path compression, O (α(n)) ≈ O (1)

I One final optimization: array representation.
It doesn’t lead to an asymptotic improvement, but it does lead
to a constant factor speedup (and simplifies implementation).

42

Array representation

So far, we’ve been thinking about disjoint sets in terms of nodes
and pointers.

For example:
private static class Node {

private int vertexNumber;

private Node parent;

}

Observation: It seems wasteful to have allocate an entire object
just to store two fields

43

Array representation

Java is technically allowed to store and represent its objects
however it wants, but in a modern 64-bit JDK, this object will
probably be 32 bytes:

I The int field takes up 4 bytes
I The pointer to the parent takes up 8 bytes (assuming 64-bit)
I The object itself also uses up an additional 16 bytes
I This adds up to 28, but in a 64 bit computer, we always

“pad” or round up to the nearest multiple of 8. So, this object
will use up 32 bytes of memory.

44

Array representation

Idea: Just use an array of ints instead!

Core idea:

I Make the index of the array be the vertex number
I Make the element in the array be the index of the parent

45

Array representation

Example:

0 1

2

3 4 5

6

7

8 9

10

11

12

13 14

15

16 17

18

r=0 r=3 r=3

-
0

-
1

1
2

2
3

2
4

2
5

1
6

6
7

7
8

7
9

7
10

-
11

11
12

12
13

12
14

11
15

15
16

15
17

17
18

46

Array representation

So, rather then using 32 bytes per element, we use just 4!

Question: Where do we store the ranks?

Observation: Hey, each root has some unused space...

Idea 1: Rather then leaving the root cells empty, just stick the
ranks there.

47

Array representation

Example:

0 1

2

3 4 5

6

7

8 9

10

11

12

13 14

15

16 17

18

r=0 r=3 r=3

0
0

3
1

1
2

2
3

2
4

2
5

1
6

6
7

7
8

7
9

7
10

3
11

11
12

12
13

12
14

11
15

15
16

15
17

17
18

What’s wrong with this idea?
48

Array representation

Problem: How do we tell whether a number is supposed to be a
rank or an index to the parent?

A trick: Rather then storing just the rank, let’s store the negative
of the rank!

So, if a number is positive, it’s an index. If the number is negative,
it’s a rank (and that node is a root).

49

Array representation

Example:

0 1

2

3 4 5

6

7

8 9

10

11

12

13 14

15

16 17

18

r=0 r=3 r=3

-0
0

-3
1

1
2

2
3

2
4

2
5

1
6

6
7

7
8

7
9

7
10

-3
11

11
12

12
13

12
14

11
15

15
16

15
17

17
18

What’s wrong with this idea?
50

Array representation

Problem: What’s the difference between 0 and -0?

Solution: Instead of just storing −rank, store −rank− 1.

(Alternatively, redefine the rank to be the upper bound of the
number of levels in the tree, rather then the height.)

51

Array representation

Example:

0 1

2

3 4 5

6

7

8 9

10

11

12

13 14

15

16 17

18

r=0 r=3 r=3

-1
0

-4
1

1
2

2
3

2
4

2
5

1
6

6
7

7
8

7
9

7
10

-4
11

11
12

12
13

12
14

11
15

15
16

15
17

17
18

52

Array representation

Now you try – what is the array representation of this disjoint set?

3

4 0

1 11 2

5 6

7

13

9 10 12

15 14 8 16

r=2 r=0 r=1 r=2

3
0

0
1

0
2

-3
3

3
4

-1
5

-2
6

6
7

12
8

13
9

13
10

0
11

13
12

-3
13

12
14

12
15

12
16

53

Recap

And that’s it for graphs. Topics covered:

I Graph definitions, graph representations
I Graph traversal: BFS and DFS
I Finding the shortest path: Dijkstra’s algorithm
I Topological sort
I Minimum spanning trees: Prim’s and Kruskal’s
I Disjoint sets

54

Recap

Next time: What does it mean for a problem to be “hard”?

55

