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Warmup

Consider the following disjoint set.

What happens if we run findSet(8) then union(4, 17)?

Note: the union(...) method internally calls findSet(...).
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Warmup

What happens when we run findSet(8)?
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Step 1: We find the node corresponding to 8 in O (1) time
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Step 3: We move each node we passed by (every red node) to
point directly at the root.

Note: we do not update the rank (too expensive)
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Warmup

What happens when we run findSet(8)?
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Step 2: We travel up the tree until we find the root
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Step 3: We move each node we passed by (every red node) to
point directly at the root.

Note: we do not update the rank (too expensive)
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Warmup

What happens when we run findSet(8)?
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Step 3: We move each node we passed by (every red node) to
point directly at the root.

Note: we do not update the rank (too expensive)
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Warmup

What happens if we run union(4, 17)?
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Warmup

What happens if we run union(4, 17)?
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Step 1: We first run findSet(4)
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Warmup

What happens if we run union(4, 17)?
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Step 1: We first run findSet(4).

So we need to crawl up and find the parent...
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Warmup

What happens if we run union(4, 17)?
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Step 1: We first run findSet(4).

So we need to crawl up and find the parent...

...and make node “4” point directly at the root.
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Warmup

What happens if we run union(4, 17)?
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Step 2: We next run findSet(17) and repeat the process.
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What happens if we run union(4, 17)?
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Step 2: We next run findSet(17) and repeat the process.
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Warmup

What happens if we run union(4, 17)?
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Step 2: We next run findSet(17) and repeat the process.
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Warmup

We’ve finished findSet(4) and findSet(17), so now we need to
finish the rest of union(4, 17) by linking the two trees together.
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Warmup

We’ve finished findSet(4) and findSet(17), so now we need to
finish the rest of union(4, 17) by linking the two trees together.
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The ranks are the same, so we arbitrarily make set 1 the root and
make set 11 the child.
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Warmup

We’ve finished findSet(4) and findSet(17), so now we need to
finish the rest of union(4, 17) by linking the two trees together.
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We then update the rank of set 1 and “forget” the rank of set 11.
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Path compression: runtime

Now, what are the worst-case and best-case runtime of the
following?

I makeSet(x):
O (1) – still the same

I findSet(x):
In the best case, O (1), in the worst case O (log(n))

I union(x, y):
In the best case, O (1), in the worst case O (log(n))

6

Back to Kruskal’s

Why are we doing this? To help us implement Kruskal’s algorithm:
def kruskal():

for (v : vertices):

makeMST(v)

sort edges in ascending order by their weight

mst = new SomeSet<Edge>()

for (edge : edges):

if findMST(edge.src) != findMST(edge.dst):

union(edge.src, edge.dst)

mst.add(edge)

return mst

I makeMST(v) takes O (tm) time
I findMST(v): takes O (tf ) time
I union(u, v): takes O (tu) time
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Back to Kruskal’s

We concluded that the runtime is:

O

|V | · tm︸ ︷︷ ︸
setup

+ |E |·log(|E |)︸ ︷︷ ︸
sorting edges

+ |E |·tf + |V |·tu︸ ︷︷ ︸
core loop


Well, we just said that in the worst case:

I tm ∈ O (1)

I tf ∈ O (log(|V |))
I tu ∈ O (log(|V |))

So the worst-case overall runtime of Kruskal’s is:

O (|V |+ |E |·log(|E |) + (|E |+ |V |)·log(|V |))
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Back to Kruskal’s

Our worst-case runtime:

O (|V |+ |E |·log(|E |) + (|E |+ |V |)·log(|V |))

One minor improvement: since our edge weights are numbers, we
can likely use a linear sort and improve the runtime to:

O (|V |+ |E |+ (|E |+ |V |)·log(|V |))

We can drop the |V |+ |E | (they’re dominated by the last term):

O (|E |+ |V |)·log(|V |))

...and we’re left with something that’s basically the same as Prim.
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Disjoint-sets, amortized analysis

...or are we?

Observation: each call to findSet(x) improves all future calls.
How much of a difference does that make?

Interesting result:

It turns out union and find are amortized log∗(n).
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Disjoint-sets, amortized analysis

Iterated log
The expression log∗b(n) is equivalent to the number of times we
repeatedly compute logb(x) to bring x down to at most 1.

What does this mean?

11

Interlude: repeated exponentiation

Observation:

I Multiplication is a shorthand for repeated addition*

2× 5 = 2 + 2 + 2 + 2

I Exponentiation is a shorthand for repeated multiplication*

25 = 2× 2× 2× 2× 2

I Is there a way of expressing repeated exponentiation?

2 ?? 5 = 22
22

2

I Why stop there – is there a way of expressing repeated
whatever-it-is-we-did up above?

2 ??!!??? 5 = 2 ?? 2 ?? 2 ?? 2 ?? 2

*assuming we use only integers 12

Interlude: Knuth’s up-arrow notation

Yes – it’s called Knuth’s up-arrow notation

I Repeated addition (multiplication) is still the same:

2× 5 = 2 + 2 + 2 + 2

I A single arrow means repeated multiplication – exponentiation

2 ↑ 5 = 2× 2× 2× 2× 2 = 25 = 16

I Two arrows means repeated exponentiation – tetration

2 ↑↑ 5 = 2 ↑ 2 ↑ 2 ↑ 2 ↑ 2 = 22
22

2

I Three arrows means repeated tetration

2 ↑↑↑ 5 = 2 ↑↑ 2 ↑↑ 2 ↑↑ 2 ↑↑ 2

I etc...
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Interlude: Knuth’s up-arrow notation

These functions all also have inverses

I Division is the inverse of multiplication:

(2× 5)

2
= 5

I log(...) is the inverse of ↑ (exponentiation)

log2(2 ↑ 5) = log2(25) = 5

I log∗(...) is the inverse of ↑↑ (tetration)

log∗2(2 ↑↑ 5) = log∗2(22
22

2

) = 5
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Up-arrows and iterated log

A slightly modified definition:
Iterated log
The expression log∗b(n) is equivalent to the number of times we
repeatedly compute logb(x) to bring x down to at most 1.

This is equivalent to the inverse of b ↑↑ x .

What does this look like?

I log∗(2 ↑↑ 1) = log ∗(2) = log(2) = 1

I log∗(2 ↑↑ 2) = log∗(22) = log(log(4)) = 2

I log∗(2 ↑↑ 3) = log∗(222) = log(log(log(8))) = 3

I log∗(2 ↑↑ 4) = log∗(222
2

) = log(log(log(log(65536)))) = 4

I log∗(2 ↑↑ 5) = log∗(222
22

) =

log(log(log(log(log(265536))))) = 5
15

A big number

And what exactly is 265536?

= 2003529930406846464979072351560255750447825475569751419
2650169737108940595563114530895061308809333481010382343429072
6318182294938211881266886950636476154702916504187191635158796
6347219442930927982084309104855990570159318959639524863372367
2030029169695921561087649488892540908059114570376752085002066
7156370236612635974714480711177481588091413574272096719015183
6282560618091458852699826141425030123391108273603843767876449
0432059603791244909057075603140350761625624760318637931264847
0374378295497561377098160461441330869211810248595915238019533
1030292162800160568670105651646750568038741529463842244845292
5373614425336143737290883037946012747249584148649159306472520
1515569392262818069165079638106413227530726714399815850881129
2628901134237782705567421080070065283963322155077831214288551 16

A big number

Note: in the interests of saving space, the handouts only contain
the first 800 or so digits of the number.

We’ve omitted the remaining digits, which take up an additional
20 slides.
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A big number

If we count, 2 ↑↑ 5 has 19729 digits!

And yet, log∗(2 ↑↑ 5) equals just 5!

Punchline? log∗(n) ≤ 5, for basically any reasonable value of n.

Runtime of Kruskal?

O ((|E |+ |V |) log∗(|V |)) ≤ O ((|E |+ |V |)5) ≈ O (|E |+ |V |)
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Inverse of the Ackermann function

But wait!

Somebody then came along and proved an even tighter bound. It
turns out findSet(...) and union(...) are amortized O (α(n))
– the inverse of the Ackermann function.
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The Ackermann function

The Ackermann function is a recursive function designed to grow
extremely quickly:

A(m, n) =


n + 1 if m = 0

A(m − 1, 1) if m > 0 and n = 0

A(m − 1,A(m, n − 1)) if m > 0 and n > 0

This function grows even more quickly then m ↑↑ n – this means
the inverse Ackermann function α(...) grows even more slowly then
log∗(...)!

So, the runtime of Kruskal’s is even better! It’s

O ((|E |+ |V |)α(|V |)) ≤ O ((|E |+ |V |)4)

...for any practical size of |V |.
40



Are we done yet?

But wait, there’s more!
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Recap

To recap, we found that the runtimes of findSet(...) and
union(...) were...

I Originally O (n)
I After applying union-by-rank, O (log(n))
I After applying path compression, O (α(n)) ≈ O (1)

I One final optimization: array representation.
It doesn’t lead to an asymptotic improvement, but it does lead
to a constant factor speedup (and simplifies implementation).
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Array representation

So far, we’ve been thinking about disjoint sets in terms of nodes
and pointers.

For example:
private static class Node {

private int vertexNumber;

private Node parent;

}

Observation: It seems wasteful to have allocate an entire object
just to store two fields
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Array representation

Java is technically allowed to store and represent its objects
however it wants, but in a modern 64-bit JDK, this object will
probably be 32 bytes:

I The int field takes up 4 bytes
I The pointer to the parent takes up 8 bytes (assuming 64-bit)
I The object itself also uses up an additional 16 bytes
I This adds up to 28, but in a 64 bit computer, we always

“pad” or round up to the nearest multiple of 8. So, this object
will use up 32 bytes of memory.
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Array representation

Idea: Just use an array of ints instead!

Core idea:

I Make the index of the array be the vertex number
I Make the element in the array be the index of the parent
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Array representation

Example:
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Array representation

So, rather then using 32 bytes per element, we use just 4!

Question: Where do we store the ranks?

Observation: Hey, each root has some unused space...

Idea 1: Rather then leaving the root cells empty, just stick the
ranks there.
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Array representation

Example:
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What’s wrong with this idea?
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Array representation

Problem: How do we tell whether a number is supposed to be a
rank or an index to the parent?

A trick: Rather then storing just the rank, let’s store the negative
of the rank!

So, if a number is positive, it’s an index. If the number is negative,
it’s a rank (and that node is a root).
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Array representation

Example:
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What’s wrong with this idea?
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Array representation

Problem: What’s the difference between 0 and -0?

Solution: Instead of just storing −rank, store −rank− 1.

(Alternatively, redefine the rank to be the upper bound of the
number of levels in the tree, rather then the height.)
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Array representation

Example:
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Array representation

Now you try – what is the array representation of this disjoint set?
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Recap

And that’s it for graphs. Topics covered:

I Graph definitions, graph representations
I Graph traversal: BFS and DFS
I Finding the shortest path: Dijkstra’s algorithm
I Topological sort
I Minimum spanning trees: Prim’s and Kruskal’s
I Disjoint sets
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Recap

Next time: What does it mean for a problem to be “hard”?
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