Warmup

Consider the following disjoint set.
What happens if we run findSet(8) then union(4, 17)?

Note: the union(. ..) method internally calls findSet(. ..).

CSE 373: Disjoint sets continued

r=0 r=3 r=3

© O @

e o ®» @ ®
ForO® 00O
®® ®

‘What happens when we run findSet(8)? ‘What happens when we run findSet(8)?
r=0 r=3 r=3 r=0 r=3 r=3
@) © O]
O] ® ® ® O] ® @ ®
POOHL GVWOO POWOHL GVWOO
®O ® ®© ®
Step 1: We find the node corresponding to 8 n O (1) time Step 2: We travel up the tree until we find the root
s s

What happens when we run findSet(8)?

What happens if we run union(4, 17)?
=0 =3 PP 4, 17)

@ R =0 =3 r=3
) o?e & B © 4 @
FOPHO® OOGO @ 00 & o

& FOOO® OOOHO

Step 3: We move each node we passed by (every red node) to ®
point directly at the root

Note: we do not update the rank (too expensive)




Warmup Warmup

What happens f we run nion¢d, 1757 What happens if we run union(4, 17)?

=0 =3 =3

=0 =

© @ @)
o O & B o O0® ® ®
For®e GO OOV VOO
® @®

Step 1: We first run findset(4)
Step 1: We first run findset(4)
So we need to crawl up and find the parent

rur N 7
What happens f we run union(4, 17) What happens i we run union(4, 17)7

r=0 r=3 r=3 B _ _
@ 4 & 2 =
TBove & ® oo & b
OB 0 BBV 5 68 dhdd
© ®

Step 2: We next run findSet(17) and repeat the process.

Step 1: W first run findset(4)
So we need to crawl up and find the parent

and make node “4” point directly at the root.

T

What happens if we run union(4, 17)?

What happens if we run union(4, 17)?

@o =3 =3
r=0 r=3 r=3
©

FOOO® @ ©

FOOO® @ VO

®O VO OO

& ©JONTIO) OV

Step 2: We next run findset(17) and repeat the process.
Step 2: We next run findSet(17) and repeat the process.




Warmup Warmup

We've finished findSet(4) and findSet(17), so now we need to
finish the rest of union(4, 17) by linking the two trees together.

We've finished findSet(4) and findSet(17), so now we need to
finish the rest of union(4, 17) by linking the two trees together.

r=0 =3 r=3
© M@
FOOO® @ VO
e e @ e @ @ @ @ The ranks are the same, so we arbitrarily make set 1 the root and

make set 11 the child

Warmup Path compression: runtime

We've finished FindSet(4) and FindSet(17), so now we need to
finish the rest of union(4, 17) by linking the two trees together.

Now, what are the worst-case and best-case runtime of the
following?
> makeSet(x):
O(1) - sl the same
> findset(x)
In the best case, © (1), in the worst case O (log(n))

> union(x, ¥)
In the best case, O (1), in the worst case O (log(n))

We then update the rank of set 1 and “forget" the rank of set 11

Back to Kruskal's Back to Kruskal's

Why are we doing this? To help us implement Kruskal's algorithm: We concluded that the runtime is

st krusal)
o o O VIt + |EL-log((E]) + E] ¢ + V-,
AL

i ek eren

sort edges in ascanding order by their weight
- o somsea0 Well, we just said that in the worst case:
or (edge : cdges

§F FiodwsrCedge.src) 1= FinansT(ede dst)
unionedge sre, edge dst) > t,c0()
st ada(ed

Cedge) > ¢ € 0 (log(|V])

>, € O log(|V])

> makeMST(v) takes O (tm) time So the worst-case overall runtime of Kruskal's is:

> FindMST(v): takes O (t7) time )
> union(u, v): takes O (t,) time O(|V| + || log(|E]) + (IE] + V) log(IV]))




Back to Kruskal's Disjoint-sets, amortized analysis

Our worst-case runtime:
O (V| + |E|-log(|EI) + (€] + | V1) og(|V]))
One minor improvement: since our edge weights are numbers, we or are we?
can likely use a linear sort and improve the runtime to: Observation: each call to findSet (x) improves all future calls
How much of a difference does that make?

O(IV| + [E| + (|E] + | VI)-log(|V])
Interesting result:
We can drop the V| + |E| (they're dominated by the last term), It turns out union and find are amortized log" (n).

O(E]+ V) log(V]))

and we're left with something that's basically the same as Prim.

Disjoint-sets, amortized analysis Interlude: repeated exponentiation

Observation:
> Multiplication s a shorthand for repeated addition*
2x5=2+2+2+2

Iterated log > Exponentiation is a shorthand for repeated multiplication*
The expression log} (n) is equivalent to the number of times we

repeatedly compute log, (x) to bring x down to at most 1.

What does this mean?
> Why stop there s there a way of expressing repeated
whatever-it-is-we-did up above?

2927775 = 2722772779779

*assuming we use ony integers 7

Interlude: Knuth’s up-arrow notation Interlude: Knuth’s up-arrow notation

Yes — it's called Knuth's up-arrow notation
These functions all also have inverses
> Repeated addition (multiplication) is still the same:

242

» Division is the inverse of multiplication
2x5=2+2

> A single arrow means repeated multiplication — exponentiation ”% 5

215=2x2
> log(...) is the inverse of 1 (exponentiation)
> Two arrows means repeated exponentiation ~ tetration
§ logy(215) = logy(2°) = 5
t5=212t21212
> log?(..) s the inverse of 11 (tetration)

> Three arrows means repeated tetration

2Mr5=21T21T 2112112 2115) = 1o

> et




Up-arrows and iterated log

A slightly modified definition

Iterated log

The expression log} (n) is equivalent to the number of times we
repeatedly compute log, (x) to bring x down to at most 1

This is equivalent to the inverse of b 1 x.

What does this look like?

> log'(2 111) = logx(2) = log(2) =

» log"(2112) = log"(2?) = log(log(4)) =

> log*(2 11 3) = log"(2%°) = log(log(log(8))) =

» log*(2114) = log*(2%" ) = log(log(log( 4
» log'(2 11 5) = log" (22"

I (205536))

(log(la

A big number

And what exactly is

01 14530895061
191635158796
1563702366126359747144807 111 427200671901518
4847
086921
07267 129
26280011

A big number

Note: in the interests of saving space, the handouts only contain
the first 800 or so digits of the number.

We've omitted the remaining digits, which take up an additional
20 slides.

A big number

If we count, 2 11 5 has 19729 digits!
And yet, log"(2 11 5) equals just 5!
Punchi

e log"(n) < 5, for basically any reasonable value of n

Runtime of Kruskal?

O((E| + V) log™(IVI)) < O((|E| +|VI)5)

O(IE[+|V])

Inverse of the Ackermann function

But wait!

Somebody then came along and proved an even tighter bound. It
turns out FindSet(...) and union(...) are amortized O (a(n))
~ the inverse of the Ackermann function

The Ackermann fi

n

The Ackermann function is a recursive function designed to grow
extremely quickly

1 ifm=0
Am,n) = { A(m—1,1) it m>0and n=0
Alm—1,A(m,n—1)) ifm>0andn>0

This function grows even more quickly then m 11 1 — this means
the inverse Ackermann function o(...) grows even more slowly then
log"(..)!

So, the runtime of Kruskal's is even better! It's
O((E|+V)a(VD) < O (€] +V]}4)

for any practical size of |V




U

To recap, we found that the runtimes of findSet(...) and
union(.....) were.

»> Originally O (n)
But wait, there’s morel > After applying union-by-rank, O (log(n))
> After applying path compression, O (a(n)) = O (1)
> One final optimization: array representation
It doesn't lead to an asymptotic improvement, but it does lead
to a constant factor speedup (and simplifies implementation)

Array representation Array representation

Java is technically allowed to store and represent its objects

So far, we've been thinking about disjoint sets in terms of nodes however it wants, but in a modern 64-bit DK, this object will
and pointers probably be 32 bytes
For exampl

or example: > The int field takes up 4 bytes
R s > The pointer to the parent takes up 8 bytes (assuming 64-bit)

private fode parent > The object itself also uses up an additional 16 bytes
> This adds up to 28, but in a 64 bit computer, we always

“pad” or round up to the nearest multiple of 8. So, this object
will use up 32 bytes of memory.

Observation: It seems wasteful to have allocate an entire object
just to store two fields

Array representation Array representation

Example:
=0 =3 =3

Idea: Just use an array of ints instead!

Core idea: 0] ® @ ©®
> Make the index of the array be the vertex number OOLOHOH® OGOOO

> Make the element in the array be the index of the parent

pRAe

T~ [a[eleu]s]s]]




Array representation Array representation

Example:

= =3

0 =3
© 0 O
So, rather then using 32 bytes per element, we use just 41
Question: Where do we store the ranks? 0] ® @ ®
Observation: Hey, each root has some unused space. FOOO® OO®O
Idea 1: Rather then leaving the root cells empty, just stick the
ranks there. ®0O ®

BENBBAE

T[T 7 3 [ule[euls]s]y]

What's wrong with this idea?

Array representation Array representation

Example:

Problem: How do we tell whether a number is supposed to be a

rank or an index to the parent? o ® @& ®

A trick: Rather then storing just the rank, let’s store the negative
of the rank! eoeo@ @@@@
So, if a number s positive, it's an index. If the number is negative,
it's a rank (and that node is a root) @
2 v
s

What's wrong with this idea?

Array representation Array representation

Example:

Problem: What's the difference between 0 and -07
Solution: Instead of just storing —rank, store —rank — 1

(Alternatively, redefine the rank to be the upper bound of the ® ® ® ®
number of levels in the tree, rather then the height.)

i e uls]e]]

st 52




ot

Now you try — what is the array representation of this disjoint set?
And that's it for graphs. Topics covered:

Graph definitions, graph representations
Graph traversal: BFS and DFS

Topological sort

>
>

» Finding the shortest path: Dijkstra’s algorithm
>

> Minimum spanning trees: Prim's and Kruskal's
>

Disjoint sets

\ [e[izle]

Next time: What does it mean for a problem to be “hard"?




