Review

Last time...

- **Prim's algorithm:** Nearly identical to Dijkstra's, except we use the distance to any already-visited node as the cost.
- **Kruskal's algorithm:** Loop over edges, from smallest to largest. Use the edge only if it doesn’t introduce a cycle.

Kruskal's algorithm: example with a weighted graph

Example of the algorithm:

```
Example of the algorithm:
```

Kruskal's algorithm: example with a weighted graph

Example of the algorithm:

```
Example of the algorithm:
```

Kruskal's algorithm: example with a weighted graph

Example of the algorithm:

```
Example of the algorithm:
```

Kruskal's algorithm: example with a weighted graph

Example of the algorithm:

```
Example of the algorithm:
```
Example of the algorithm:

```
Example of the algorithm:
```

```
Example of the algorithm:
```
Kruskal’s algorithm: example with a weighted graph

Example of the algorithm:

```
  a --- b
  |     |
  8    4
  |     |
  h     g
  1    7

  c --- d
  |     |
  7    2
  |     |
  i     f
  2    10

  e
```

Example of the algorithm:

```
  a --- b
  |     |
  8    4
  |     |
  h     g
  1    7

  c --- d
  |     |
  7    2
  |     |
  i     f
  2    10

  e
```
Kruskal’s algorithm: example with a weighted graph

Example of the algorithm:

```
Example of the algorithm:
```

```
Example of the algorithm:
```

```
Example of the algorithm:
```

```
Example of the algorithm:
```
Example of the algorithm:

Example of the algorithm:
Kruskal’s algorithm: example with a weighted graph

Example of the algorithm:

```
Example of the algorithm:
```

Kruskal’s algorithm: analysis

Runtime analysis:
```
def kruskal():
  for (v : vertices):
    makeMST(v)
  sort edges in ascending order by their weight
  mst = new SomeSet<Edge>()
  for (edge : edges):
    if findMST(edge.src) != findMST(edge.dst):
      union(edge.src, edge.dst)
    mst.add(edge)
  return mst
```

Note: assume that...

▶ \text{makeMST(v)} takes \(O(t_m) \) time
▶ \text{findMST(v)} takes \(O(t_f) \) time
▶ \text{union(u, v)} takes \(O(t_u) \) time

Putting it all together:
\[O(|V| \cdot t_m + |E| \cdot \log(|E|) + |E| \cdot t_f + |V| \cdot t_u) \]

The DisjointSet ADT

But wait, what exactly is \(t_m, t_f, \) and \(t_u \)? How exactly do we implement \(\text{makeMST(v)}, \text{findMST(v)}, \) and \(\text{union(u, v)} \)?

We can do so using a new ADT called the DisjointSet ADT!

Interlude: What is a set?

Review: what is a set?

▶ A set is a “bag” of elements arranged in no particular order.
▶ A set may not contain duplicates.

We implemented a set in project 2: ChainedHashSet

Interesting note: sets come up all the time in math.

The DisjointSet ADT

Properties of a disjoint-set data structure:

▶ A disjoint-set data structure maintains a collection of many different sets.
▶ An item may not be contained within multiple sets. Each set must be disjoint.
▶ Each set is associated with some representative. What is a representative? Any sort of unique “identifier”. Examples:
 ▶ We could pick some arbitrary element in the set to be the “representative”
 ▶ We could assign each set some unique integer id.
A disjoint-set has the following core operations:

- **makeSet(x)** – Creates a new set where the only member is x. We assign that set a representative.
- **findSet(x)** – Looks up the set containing x. Then, returns the representative of that set.
- **union(x, y)** – Looks up the set containing x and the set containing y. We combine these two sets together into one. We (arbitrarily) pick one of the two representatives to be the representative of this new set.

Example:
```
makeSet(a)
makeSet(b)
makeSet(c)
makeSet(d)
makeSet(e)
```
```
print(findSet(a))
print(findSet(d))
union(a, c)
union(b, d)
print(findSet(a) == findSet(c))
print(findSet(a) == findSet(d))
union(c, b)
print(findSet(a) == findSet(d))
```
The DisjointSet ADT

Example:
makeSet(a)
makeSet(b)
makeSet(c)
makeSet(d)
makeSet(e)
print(findSet(a))
print(findSet(d))
union(a, c)
union(b, d)
print(findSet(a) == findSet(c))
print(findSet(a) == findSet(d))
union(c, b)
print(findSet(a) == findSet(d))

What operations does a disjoint-set NOT support?

Answer: The ability to actually get the entire set.

We can make a set, check if an item is in a set, and combine two sets, but we don’t have a built-in way of getting the entire set itself.

Insight: The few operations we need to support, the more creative our implementation can be.

(If the client really wants the sets, they can get it themselves in O(n) time – how?)

DisjointSet: implementation

Suppose we call makeSet(...) on 0 through 5.

Each makeSet(...) adds a new tree to our “forest”. Note that right now, each tree has only one element.
Suppose we call `union(3, 5)`.

We combine those two trees into one.

Question: how do we implement `findSet(...)`?

Once we find a node, move upwards until we’re looking at root.

Then, return the root’s data field.

Suppose we call `union(5, 4)`.

Algorithm: Find the roots of both trees and add one tree as a subchild of the other.

Which tree becomes the new root? For now, pick randomly.

Now, suppose we call `union(2, 4)`. What happens?

We look up 2 and 3, find their roots, and nest one tree inside the other.

What’s the worst-case runtime of our methods?

Better question: are our trees guaranteed to be balanced?

Hint: When union-ing, we pick which tree is nested randomly.

Does that guarantee we’ll get a balanced tree?
DisjointSet: Analysis

The worst-case scenario:

```
  5
   4
    3
     2
      1
       0
```

Possible outcome of calling `union(0, 5)`

DisjointSet: implementation

So, what are the worst-case runtimes?

- **makeSet(x):**
 \(\mathcal{O}(1) \) – creating the tree takes constant time

- **findSet(x):**
 \(\mathcal{O}(n) \) – if it’s a linked list, we need to traverse \(n \) elements!

- **union(x, y):**
 \(\mathcal{O}(n) \) – union calls `findSet(...)` on both elements

...where \(n \) is the total number of items added to the disjoint-set.

Improving DisjointSet

How can we improve disjoint sets?

1. **Union-by-rank:**
 Strategy to make sure trees are balanced

2. **Path compression:**
 Hijack `findSet(x)` and make it do a little extra work to improve overall performance.

3. **Array representation:**
 Takes advantage of cache locality, simplifies implementation, etc.

Union-by-rank

Problem: Our trees could be unbalanced

Solution:

Let \(\text{rank}(x) \) be a number representing the upper-bound of the height of \(x \). So, \(\text{rank}(x) \geq \text{height}(x) \).

We then:

1. Keep track of the rank of all trees.
2. When unifying, make the tree with the larger rank the root!
3. If it’s a tie, pick one randomly and increase the rank by one.

(Why not keep track of the height? When we look at path compression, keeping track of the height becomes more challenging.)

Example: Suppose we call `union(1, 5)`?

The tree with the root of "6" has the larger rank, so we make it the root.

Note: we’re not really “removing” the rank from node 0 – it’s just

Union-by-rank

Example: Suppose we call \texttt{union(1, 5)}?

\[
\begin{array}{ccc}
\text{r=2} & \text{r=0} & \text{r=2} \\
6 & 2 & 8 \\
0 & 4 & 3 \\
1 & 5 & 9 \\
\end{array}
\]

The tree with the root of “6” has the larger rank, so we make it the root.

Note: we’re not really “removing” the rank from node 0 – it’s just irrelevant, so we’re ignoring it and omitting it from the diagram to save space. We only care about the ranks at the roots.

Union-by-rank

Example: Suppose we call \texttt{union(5, 11)}?

\[
\begin{array}{ccc}
\text{r=0} & \text{r=3} \\
2 & 6 & 8 \\
0 & 4 & 3 \\
1 & 5 & 9 \\
11 & 10 & 11 \\
\end{array}
\]

Here, there’s a tie. We break the tie arbitrarily, and increment the rank of the new tree by one.

Net effect? Our trees stay relatively balanced.

So, what are the worst-case runtimes now?

\begin{itemize}
\item \texttt{makeSet(x)}: \[O(1)\] – still the same
\item \texttt{findSet(x)}: \[O(\log(n))\] – since the tree is balanced
\item \texttt{union(x, y)}: \[O(\log(n))\] – since union calls \texttt{findSet}
\end{itemize}

Path compression

Consider the following forest:

\[
\begin{array}{ccc}
1 & 7 \\
2 & 5 & 4 \\
6 & 10 & 9 \\
3 & 11 & 13 \\
\end{array}
\]

Suppose we call \texttt{findSet(3)} a few hundred times.

Why do we have to keep finding the root again and again?

Observation: To find root, we must also traverse these nodes:

\[
\begin{array}{ccc}
1 & 2 & 5 \\
6 & 4 & 9 \\
3 & 10 & 14 \\
11 & 13 & 0 \\
\end{array}
\]

What if, next time, we could just jump straight to the root?

Same for the other nodes we visited
Path compression

Observation: To find root, we must also traverse these nodes:

What if, next time, we could just jump straight to the root? Same for the other nodes we visited.

Now what happens if we try calling `findSet(3)`?

Path compression

So, let's do it!

Now what happens if we try calling `findSet(3)`?

Path compression

One additional note: path compression changes the heights of our trees. This means it could be the case that rank \neq height. Is this a problem?

Answer: No; proof is beyond the scope of this class.
Now, what are the worst-case and best-case runtime of the following?

- **makeSet(x):**
 \(O(1)\) – still the same

- **findSet(x):**
 In the best case, \(O(1)\), in the worst case \(O(\log(n))\)

- **union(x, y):**
 In the best case, \(O(1)\), in the worst case \(O(\log(n))\)

Back to Kruskal’s

We concluded that the runtime is:

\[
\mathcal{O}\left(\left|V\right| \cdot t_{\text{setup}} + \left|E\right| \cdot \log\left(\left|E\right|\right) + \left|E\right| \cdot t_{r} + \left|V\right| \cdot t_{u}\right)
\]

Well, we just said that in the worst case:

- \(t_{\text{setup}} \in O(1)\)
- \(t_{r} \in O(\log(|V|))\)
- \(t_{u} \in O(\log(|V|))\)

So the worst-case overall runtime of Kruskal’s is:

\[
\mathcal{O}\left(|V| + \left|E\right| \cdot \log\left(\left|E\right|\right) + \left(\left|E\right| + |V|\right) \cdot \log(|V|)\right)
\]

Disjoint-sets, amortized analysis

...or are we?

Observation: each call to findSet(x) improves all future calls.
How much of a difference does that make?

Interesting result:

It turns out union and find are amortized \(\log^*(n)\).
What is 2^{65536}?

$2^{65536} = 2003529935548905373932047530222803443018633911047170975471266115557201046762428380558757707...$

A big number

And even then:

3^{26}

But wait!

Somebody then came along and proved that find and union are amortized $O(\alpha(n))$ – the inverse of the Ackermann function.

This grows even more slowly than

$\log^* n$!