CSE 373: Minimum Spanning Trees: Prim and Kruskal

Michael Lee

Monday, Feb 26, 2018

Minimum spanning trees

Punchline: a MST of a graph connects all the vertices together while minimizing the number of edges used (and their weights). Minimum spanning trees

Given a connected, undirected graph G = (V, E), a minimum spanning tree is a subgraph G' = (V', E') such that...

V = V' (G' is spanning)

- There exists a path from any vertex to any other one
 - ➤ The sum of the edge weights in E' is minimized.

In order for a graph to have a MST, the graph must...

- ▶ ...be connected there is a path from a vertex to any other
 - vertex. (Note: this means $|V| \le |E|$).
- be undirected

Minimum spanning trees: example

An example of an minimum spanning tree (MST):

Minimum spanning trees: Applications

Example questions:

- ➤ We want to connect phone lines to houses, but laving down cable is expensive. How can we minimize the amount of wire we must install?
- ▶ We have items on a circuit we want to be "electrically equivalent". How can we connect them together using a minimum amount of wire?

Other applications:

- ► Implement efficient multiple constant multiplication
- Minimizing number of packets transmitted across a network
- ► Machine learning (e.g. real-time face verification)
- ▶ Graphics (e.g. image segmentation)

Minimum spanning trees: properties

Important properties:

- ► A valid MST cannot contain a cycle vertices are no longer connected.
- ▶ If we add or remove an edge from an MST, it's no longer a valid MST for that graph. Adding an edge introduces a cycle; removing an edge means
- ▶ If there are |V| vertices, the MST contains exactly |V| 1 edges
- ▶ An MST is always a tree.
- ▶ If every edge has a unique weight, there exists a unique MST.

Minimum spanning trees: algorithm

Design question: how would you implement an algorithm to find the MST of some graph, assuming the edges all have the same weight?

Hinte-

- ► Try modifying DFS or BFS.
- Try using an incremental approach: start with an empty graph, and steadily add nodes and edges.

Minimum spanning trees: approach 1, adding nodes

Intuition: We start with an "empty" MST, and steadily grow it.

Core algorithm:

- 1. Start with an arbitrary node.
- 2. Run either DFS or BFS, storing edges in our stack or queue.
- 3. As we visit nodes, add each edge we remove to our MST.

Minimum spanning trees: approach 1, adding nodes

An example using a modified version of DFS:

Stack:

8

Minimum spanning trees: approach 1, adding nodes

An example using a modified version of DFS:

Stack: (a, b), (a, d),

Minimum spanning trees: approach 1, adding nodes

An example using a modified version of DFS:

Stack: (a, b), (d, e), (d, f), (d, g),

Minimum spanning trees: approach 1, adding nodes

An example using a modified version of DFS:

Stack: (a,b), (d,e), (d,f), (g,h), (g,i),

Minimum spanning trees: approach 1, adding nodes

An example using a modified version of DFS:

Stack: (a, b), (d, e), (d, f), (g, h),

Interlude: finding the shortest path

Review: How do we find the shortest path between two vertices?

- ► If the graph is unweighted: run BFS
- ► If the graph is weighted: run Diikstra's

How does Diikstra's algorithm work?

- Give each vertex v a "cost": the cost of the shortest-known path so far between v and the start.
 (The cost of a path is the sum of the edge weights in that path)
- Pick the node with the smallest cost, update adjacent node costs, repeat

Minimum spanning trees: approach 1, adding nodes

Intuition: We can use the same idea to find a MST!

Core idea: Use the exact same algorithm as Dijkstra's algorithm, but redefine the cost:

► Previously, for Diikstra's:

The cost of vertex v is the cost of the shortest-known path so far between v and the start

► Now:

The cost of vertex v is the cost of the shortest-known path so far between v and any node we've visited so far

This algorithm is known as Prim's algorithm.

Compare and contrast: Dijkstra vs Prim

Pseudocode for Dijkstra's algorithm:

def dijkstra(start):

backpointers = new SomeDictionary(Vertex, Vertex>()

for (v : vertices):

set cost(v) to infinity set cost(start) to 0

while (we still have unvisited nodes) current - get next smallest node

for (edge : current.getOutEdges()):
 newCost = min(cost(current) + edge.cost, cost(edge.dst))
 update cost(edge.dst) to newCost
 backcostners.cut(edge.dst.) edge.arc)

return backpointer

..

Compare and contrast: Dijkstra vs Prim

Pseudocode for Prim's algorithm:

def prim(start):
 backpointers = new SomeDictionaryVertex>()

for (v : vertices):

set cost(v) to infinity

while (we still have unvisited nodes): current = get next smallest node

for (edge : current.getOutEdges()):

newCost = min(edge.cost, cost(edge.dst))
update cost(edge.dst) to newCost
backpointers.put(edge.dst, edge.src)

return backpointers

13

Prim's algorithm: an example

Prim's algorithm: an example

We initially set all costs to ∞ , just like with Dijkstra.

14

Analyzing Prim's algorithm

Question: What is the worst-case asymptotic runtime of Prim's algorithm?

Answer: The same as Dijkstra's: $O(|V|t_x + |E|t_u)$ where...

- $\blacktriangleright t_{\rm s} = {\rm time}$ needed to get next smallest node
- ▶ t_u = time needed to update vertex costs

So, $\mathcal{O}\left(|V|\log(|V|) + |E|\log(|V|)\right)$ if we stick to data structures we know how to implement; $\mathcal{O}\left(|V|\log(|V|) + |E|\right)$ if we use Fibonacci heaps.

Minimum spanning trees, approach 2

Recap: Prim's algorithm works similarly to Dijkstra's – we start with a single node, and "grow" our MST.

A second approach: instead of "growing" our MST, we...

- Initially place each node into its own MST of size 1 so, we start with |V| MSTs in total.
- Steadily combine together different MSTs until we have just one left
- How? Loop through every single edge, see if we can use it to join two different MSTs together.

This algorithm is called Kruskal's algorithm

Kruskal's algorithm

An example, for unweighted graphs. Note: each MST has a different color.

Kruskal's algorithm

An example, for unweighted graphs. Note: each MST has a different color.

18

Kruskal's algorithm

An example, for unweighted graphs. Note: each MST has a different color.

18

Kruskal's algorithm

An example, for unweighted graphs. Note: each MST has a different color.

18

Kruskall's algorithm An example, for unweighted graphs. Note: each MST has a different color.

Kruskal's algorithm An example, for unweighted graphs. Note: each MST has a different color.

Kruskal's algorithm An example, for unweighted graphs. Note: each MST has a different color.

Kruskal's algorithm An example, for unweighted graphs. Note: each MST has a different color.

Kruskal's algorithm An example, for unweighted graphs. Note: each MST has a different color.

Kruskal's algorithm: weighted graphs

Question: How do we handle edge weights?

Answer: Consider edges sorted in ascending order by weight.

So, we look at the edge with the smallest weight first, the edge with the second smallest weight next, etc.

Kruskal's algorithm: pseudocode

Pseudocode for Kruskal's algorithm:

def kruskal():

mst - new SomeSet<Edge>()

for (v : vertices):
 makeMST(v)

sort edges in ascending order by their weight

for (edge : edges):
 if findMST(edge.src) != findMST(edge.dst):
 union(edge.src, edge.dst)
 mst.add(edge)

► makeMST(v): stores v as a MST containing just one node

- ► findMST(v): finds the MST that vertex is a part of
- vertices, using the edge (u,v)

▶ union(u, v): combines the two MSTs of the two given

Kruskal's algorithm: example with a weighted graph

Now you try:

Kruskal's algorithm: example with a weighted graph

Now you try:

Kruskal's algorithm: example with a weighted graph

Now you try:

Kruskal's algorithm: example with a weighted graph

Now you try:

Kruskal's algorithm: example with a weighted graph

Kruskal's algorithm: analysis

What is the worst-case runtime?

def kruskal(): mst - new SomeSet<Edge>()

for (v : vertices):
 makeMST(v)

sort edges in ascending order by their weight

for (edge : edges):
 if findMST(edge.src) != findMST(edge.dst):
 union(edge.src, edge.dst)
 mst.add(edge)

Note: assume that...

- ▶ makeMST(v) takes O(t_m) time
- ▶ findMST(v): takes O(t_ℓ) time
- ▶ union(u, v): takes O(t_u) time

Kruskal's algorithm: analysis

- ► Making the |V| MSTs takes O(|V|-t_m) time
- ▶ Sorting the edges takes $O(|E| \cdot \log(|E|))$ time, assuming we use a general-purpose comparison sort
- ▶ The final loop takes $O(|E| \cdot t_f + |V| \cdot t_u)$ time

Putting it all together:

$$O(|V| \cdot t_m + |E| \cdot \log(|E|) + |E| \cdot t_f + |V| \cdot t_u)$$

23

The DisjointSet ADT

But wait, what exactly is t_m , t_f , and t_u ? How exactly do we

implement makeMST(v), findMST(v), and union(u, v)? We can do so using a new ADT called the DisjointSet ADT!

