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Design question: suppose we have a bunch of classes with
pre-requisites.

MATH 126 XYZ

] csE143] CSE413
CSE142 ™~

| CSE373 || CSE410]

CSE415

I/

Goal: list out classes in a “valid” order

For example: 126, 142, 143, 374, 373, 417, 410, 413, XYZ, 415
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on that graph will produce a list of all the vertices in an order
such that no vertex appears before another vertex that has an
edge to it.
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Topological sort

Given a directed, acyclic graph (DAG), running topological sort
on that graph will produce a list of all the vertices in an order
such that no vertex appears before another vertex that has an
edge to it.

Example applications:

» Any scheduling problem (scheduling courses, scheduling
threads)

» Computing order to recompute cells in spreadsheet

» Determining order to compile files using a MAkefile

In general: taking a dependency graph and coming up with order
of execution.
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Topological sort

Questions

» Can we perform topo-sort on graphs containing cycles?
No: how do we decide which node comes first?

» s there always one unique output per graph?
No: see example on inked slides
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Topological sort: algorithm

Intuition:

» The only nodes we can start with are also nodes that have
in-degree 0

» So, start by adding those to the list

» s there some way of “repeating” this process?
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Topological sort

Setup
> Look at each vertex and record its in-degree somewhere
Core loop

» Choose an arbitrary vertex a with in-degree 0
» Qutput a and conceptually remove it from the graph
» For each vertex b adjacent to a, decrement the in-degree of b

> Repeat
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Topological sort: Example 1

Example again:

Output: CSE142, MATH126, CSE143, CSE374, CSE373, CSEA413,
CSEA410, XYZ, CSE417, CSE415
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Topological sort: Example 2

Now you try. List one possible output:

One possible answer: a, b, g, ¢, e, h, d, i, f, j, k



Topological sort: Algorithm

Our algorithm so far:

Setup
> Look at each vertex and record its in-degree somewhere
Core loop

» Choose an arbitrary vertex a with in-degree 0
» Output a and conceptually remove it from the graph
» For each vertex b adjacent to a, decrement the in-degree of b

> Repeat



Topological sort: Algorithm

One

def

def

possible implementation:

toposort(graph):

indegrees = new HashMap<Vertex, Integer>()
visited = new HashSet<Vertex>()

output = new AnyList<Vertex>()

compute all indegrees and add to dictionary

while (we still need to visit vertices):
current = getNextVertex(indegrees, visited)
add current to both visited and output

for (v : current.allNeighbors()):
indegrees[v] -= 1

return output

getNextVertex(indegrees, visited):
for (node, num : indegrees):
if (num == 0 and node not in visited):
return node
10
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possible implementation:
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visited = new HashSet<Vertex>() ’

output = new AnylList<Vertex>() O (‘ \/|2 + |E|)
compute all indegrees and add to dictionary

while (we still need to visit vertices): Is this optimal?
current = getNextVertex(indegrees, visited)
add current to both visited and output
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indegrees[v] -= 1

return output
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Topological sort: Algorithm

One possible implementation:

def toposort(graph):
indegrees = new HashMap<Vertex, Integer>()
visited = new HashSet<Vertex>()
output = new AnyList<Vertex>()

compute all indegrees and add to dictionary

while (we still need to visit vertices):
current = getNextVertex(indegrees, visited)
add current to both visited and output

for (v : current.allNeighbors()):
indegrees[v] -= 1

return output

def getNextVertex(indegrees, visited):
for (node, num : indegrees):
if (num == 0 and node not in visited):
return node

Questions:
Worst-case runtime?

O (|V[* +|E])

Is this optimal?

Maybe not. Do
we really need to
look at each node
multiple times? Can
we somehow get
O (V| +]E))?

10



Topological sort: Algorithm

def

def

toposort(graph):

indegrees = new HashMap<Vertex, Integer>()

visited = new HashSet<Vertex>()

output = new AnyList<Vertex>()

compute all indegrees and add to dictionary

while (we still need to visit vertices):
current = getNextVertex(indegrees, visited)
add current to both visited and output
for (v : current.allNeighbors()):

indegrees[v] -= 1
return output

getNextVertex(indegrees, visited):
for (node, num : indegrees):
if (num == 0 and node not in visited):
return node

How can we improve this?

11



Topological sort: Algorithm

def toposort(graph):

indegrees = new HashMap<Vertex, Integer>()

visited = new HashSet<Vertex>()

output = new AnyList<Vertex>()

compute all indegrees and add to dictionary

while (we still need to visit vertices):
current = getNextVertex(indegrees, visited)
add current to both visited and output
for (v : current.allNeighbors()):

indegrees[v] -= 1
return output

def getNextVertex(indegrees, visited):
for (node, num : indegrees):
if (num == 0 and node not in visited):
return node

How can we improve this?

» Can we get rid of the inner loop somehow?

» Would using different/more data structures help?

» Can we collect additional information somewhere else? u



Topological sort: Algorithm 2

Insight: When we're updating the indegrees, we already know
which nodes now have an indegree of zero!
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Topological sort: Algorithm 2

Insight: When we're updating the indegrees, we already know
which nodes now have an indegree of zero!

Why are we discarding and recomputing that info? Let’s just use it!

def toposort(graph):
indegrees = new HashMap<Vertex, Integer>()
visited = new HashSet<Vertex>()
output = new AnyList<Vertex>()
stack = new Stack<Vertex>();

compute all indegrees and add to dictionary

while (we still need to visit vertices):
current = stack.pop()
add current to both visited and output

for (v : current.allNeighbors()):
indegrees[v] -= 1
if (indegrees[v] == 0):
stack.push(v)

return output
12
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Topological sort: Algorithm 2

def toposort(graph):
indegrees = new HashMap<Vertex, Integer>()
visited = new HashSet<Vertex>()
output = new AnyList<Vertex>()
stack = new Stack<Vertex>();

compute all indegrees and add to dictionary

while (we still need to visit vertices):
current = stack.pop()
add current to both visited and output

for (v : current.allNeighbors()):
indegrees[v] -= 1
if (indegrees[v] == 0):
stack.push(v)
return output

Question: Does this actually work?

Answer: No, there's a bug! The stack is initially empty, so first

pop fails. -



Topological sort: Algorithm 2

def toposort(graph):
indegrees = new HashMap<Vertex, Integer>()
visited = new HashSet<Vertex>()
output = new AnyList<Vertex>()
stack = new Stack<Vertex>();

compute all indegrees and add to dictionary
also add all nodes with indegree zero to stack
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Topological sort: Algorithm 2

def toposort(graph):
indegrees = new HashMap<Vertex, Integer>()
visited = new HashSet<Vertex>()
output = new AnyList<Vertex>()
stack = new Stack<Vertex>();

compute all indegrees and add to dictionary
also add all nodes with indegree zero to stack

while (we still need to visit vertices):
current = stack.pop()
add current to both visited and output

for (v : current.allNeighbors()):
indegrees[v] -= 1
if (indegrees[v] == 0):
stack.push(v)
return output

Question: Can we improve this algorithm even more?

Answer: Why do we need the visited set?
14
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Topological sort: Algorithm 2

def toposort(graph):
indegrees = new HashMap<Vertex, Integer>()
output = new AnyList<Vertex>()
stack = new Stack<Vertex>();

compute all indegrees and add to dictionary
also add all nodes with indegree zero to stack

while (we still need to visit vertices):
current = stack.pop()
add current to output

for (v : current.allNeighbors()):
indegrees[v] -= 1
if (indegrees[v] == 0):
stack.push(v)
return output

Question: What's the worst-case runtime now?

Answer: O (|V|+ |E|)
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Minimum spanning trees

And now, for something completely different...
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Minimum spanning trees

Punchline: a MST of a graph connects all the vertices together
while minimizing the number of edges used (and their weights).
Minimum spanning trees

Given a connected, undirected graph G = (V, E), a minimum
spanning tree is a subgraph G' = (V'  E’) such that...
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Minimum spanning trees

Punchline: a MST of a graph connects all the vertices together
while minimizing the number of edges used (and their weights).

Minimum spanning trees

Given a connected, undirected graph G = (V, E), a minimum
spanning tree is a subgraph G' = (V'  E’) such that...

» V = V' (G is spanning)

» There exists a path from any vertex to any other one

» The sum of the edge weights in E’ is minimized.

In order for a graph to have a MST, the graph must...

» ...be connected — there is a path from a vertex to any other
vertex. (Note: this means |V/| < |E|).
» ...be undirected. 17



Minimum spanning trees: example

An example of an minimum spanning tree (MST):

18



Minimum spanning trees: Applications

Example questions:

> We want to connect phone lines to houses, but laying down
cable is expensive. How can we minimize the amount of wire
we must install?
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Minimum spanning trees: Applications

Example questions:

> We want to connect phone lines to houses, but laying down
cable is expensive. How can we minimize the amount of wire
we must install?

> We have items on a circuit we want to be “electrically
equivalent”. How can we connect them together using a

minimum amount of wire?
Other applications:

» Implement efficient multiple constant multiplication

» Minimizing number of packets transmitted across a network
» Machine learning (e.g. real-time face verification)

» Graphics (e.g. image segmentation)

19



Minimum spanning trees: properties

Some questions...

» Can a valid MST contain a cycle?

» If we take a valid MST and remove an edge, is it still an MST?

» If we take a valid MST and add an edge, is it still an MST?

P If there are V vertices, how many edges are contained in the
minimum spanning tree?

20



Minimum spanning trees: properties

Some questions...

» Can a valid MST contain a cycle?
Answer: no. If there's a cycle, we can always remove one edge
to break the cycle while still leaving all nodes connected.

» If we take a valid MST and remove an edge, is it still an MST?
Answer: No. If we're already using the fewest edges possible,
removing an edge would make the nodes no longer connected.

» If we take a valid MST and add an edge, is it still an MST?
Answer: No. Since all the edges are already connected, this
would introduce a cycle.

P If there are V vertices, how many edges are contained in the
minimum spanning tree?
Answer: |V|—1 20



Minimum spanning trees: algorithm

Design question: how would you implement an algorithm to find
the MST of some graph, assuming the edges all have the same
weight?
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Minimum spanning trees: algorithm

Design question: how would you implement an algorithm to find
the MST of some graph, assuming the edges all have the same
weight?

One idea: run DFS, and keep all the edges that don't connect
back to an already-visited vertex.

Another idea: iterate through the edges, and add an edge as long
as it doesn’t introduce a cycle.

21



Minimum spanning tree: coming up next

Next time:

How do we account for edge weights?

» Prim’s algorithm: Traverse through graph, and add nodes
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Minimum spanning tree: coming up next

Next time:

How do we account for edge weights?

» Prim’s algorithm: Traverse through graph, and add nodes
» Kruskal’'s algorithm: Iterate through edges, and add edges

In both cases, we avoid adding nodes/edges that introduce a cycle,
and need to figure out how to pick the “best” node or edge.

22



