CSE 373: Topological Sort and Minimum
Spanning Trees

Michael Lee
Friday, Feb 23, 2018

Topological sort

Design question: suppose we have a bunch of classes with
pre-requisites.

MATH 126 XYZ

] csE143] CSE413
CSE142 I

| CSE373 || CSE410]

CSE415

I/

Topological sort

Design question: suppose we have a bunch of classes with
pre-requisites.

MATH 126 XYZ

] csE143] CSE413
CSE142 ™~

| CSE373 || CSE410]

CSE415

I/

Goal: list out classes in a “valid” order

For example: 126, 142, 143, 374, 373, 417, 410, 413, XYZ, 415

Topological sort

Topological sort

Given a directed, acyclic graph (DAG), running topological sort
on that graph will produce a list of all the vertices in an order
such that no vertex appears before another vertex that has an
edge to it.

Topological sort

Topological sort

Given a directed, acyclic graph (DAG), running topological sort
on that graph will produce a list of all the vertices in an order
such that no vertex appears before another vertex that has an
edge to it.

Example applications:

» Any scheduling problem (scheduling courses, scheduling
threads)

» Computing order to recompute cells in spreadsheet

» Determining order to compile files using a MAkefile

In general: taking a dependency graph and coming up with order
of execution.

Topological sort

Questions

» Can we perform topo-sort on graphs containing cycles?

» Is there always one unique output per graph?

Topological sort

Questions

» Can we perform topo-sort on graphs containing cycles?
No: how do we decide which node comes first?

» s there always one unique output per graph?
No: see example on inked slides

Topological sort: algorithm

Intuition:

» The only nodes we can start with are also nodes that have
in-degree 0

Topological sort: algorithm

Intuition:

» The only nodes we can start with are also nodes that have
in-degree 0

» So, start by adding those to the list

Topological sort: algorithm

Intuition:

» The only nodes we can start with are also nodes that have
in-degree 0

» So, start by adding those to the list

» s there some way of “repeating” this process?

Topological sort

Setup

> Look at each vertex and record its in-degree somewhere

Topological sort

Setup
> Look at each vertex and record its in-degree somewhere
Core loop

» Choose an arbitrary vertex a with in-degree 0

Topological sort

Setup
> Look at each vertex and record its in-degree somewhere
Core loop

» Choose an arbitrary vertex a with in-degree 0

» Qutput a and conceptually remove it from the graph

Topological sort

Setup
> Look at each vertex and record its in-degree somewhere
Core loop

» Choose an arbitrary vertex a with in-degree 0
» Qutput a and conceptually remove it from the graph

» For each vertex b adjacent to a, decrement the in-degree of b

Topological sort

Setup
> Look at each vertex and record its in-degree somewhere
Core loop

» Choose an arbitrary vertex a with in-degree 0
» Qutput a and conceptually remove it from the graph
» For each vertex b adjacent to a, decrement the in-degree of b

> Repeat

Topological sort: Example 1

Example again:

CSE374:
MATH126:

CSE143: |
CSE142: T~

| CSE373: || CSE410: |

CSE413:

Output:

Topological sort: Example 1

Example again:

CSE374: 1
MATH126: 0

[CSE143: 2] CSE413: 1

CSE142: 0

| CSE373: 1 p{ CSE410: 1]

Output:

Topological sort: Example 1

Example again:

CSE374: 1
MATH126: 0
CSE143: 2 CSE41§;j////ﬂ

| CSE373: 1 p{ CSE410: 1]

Output: CSE142,

Topological sort: Example 1

Example again:

CSE374: 1
MATH126: 0
CSE143: 1 CSE41§;j////ﬂ

| CSE373: 1 p{ CSE410: 1]

Output: CSE142,

Topological sort: Example 1

Example again:

XYZ: 3

CSE413: 1

| CSE373: 1 | CSE410: 1]

Output: CSE142, MATH126,

Topological sort: Example 1

Example again:

XYZ: 3

CSE413: 1

| CSE373: 1 | CSE410: 1]

Output: CSE142, MATH126,

Topological sort: Example 1

Example again:

XYZ: 3

CSE413/

| CSE373: 1 | CSE410: 1]

Output: CSE142, MATH126, CSE143,

Topological sort: Example 1

Example again:

XYZ: 3

CSE413/

| CSE373: 0]{ CSE410: 1]

Output: CSE142, MATH126, CSE143,

Topological sort: Example 1

Example again:

XYZ: 3

CSE413/

| CSE373: 0] CSE410: 1]

Output: CSE142, MATH126, CSE143, CSE374,

Topological sort: Example 1

Example again:

XYZ: 2

CSE413/

| CSE373: 0] CSE410: 1]

Output: CSE142, MATH126, CSE143, CSE374,

Topological sort: Example 1

Example again:

XYZ: 2

CSE413: 1

Nz

Output: CSE142, MATH126, CSE143, CSE374, CSE373,

Topological sort: Example 1

Example again:

XYZ: 2

CSE413: 0

NE=r

Output: CSE142, MATH126, CSE143, CSE374, CSE373,

Topological sort: Example 1

Example again:

- {csEmo o)
NE=ro

Output: CSE142, MATH126, CSE143, CSE374, CSE373, CSEA413,

Topological sort: Example 1

Example again:

- {csEmo o)
NE=ro

Output: CSE142, MATH126, CSE143, CSE374, CSE373, CSEA413,

Topological sort: Example 1

Example again:

NE=ro

Output: CSE142, MATH126, CSE143, CSE374, CSE373, CSEA413,
CSE410,

Topological sort: Example 1

Example again:

NE=ro

Output: CSE142, MATH126, CSE143, CSE374, CSE373, CSEA413,
CSE410,

Topological sort: Example 1

Example again:

N

Output: CSE142, MATH126, CSE143, CSE374, CSE373, CSEA413,
CSE410, XYZ,

Topological sort: Example 1

Example again:

NEEr

Output: CSE142, MATH126, CSE143, CSE374, CSE373, CSEA413,
CSEA410, XYZ, CSE417,

Topological sort: Example 1

Example again:

Output: CSE142, MATH126, CSE143, CSE374, CSE373, CSEA413,
CSEA410, XYZ, CSE417, CSE415

Topological sort: Example 1

Example again:

Output: CSE142, MATH126, CSE143, CSE374, CSE373, CSEA413,
CSEA410, XYZ, CSE417, CSE415

Topological sort: Example 2

Now you try. List one possible output:

Topological sort: Example 2

Now you try. List one possible output:

One possible answer: a, b, g, ¢, e, h, d, i, f, j, k

Topological sort: Algorithm

Our algorithm so far:

Setup
> Look at each vertex and record its in-degree somewhere
Core loop

» Choose an arbitrary vertex a with in-degree 0
» Output a and conceptually remove it from the graph
» For each vertex b adjacent to a, decrement the in-degree of b

> Repeat

Topological sort: Algorithm

One

def

def

possible implementation:

toposort(graph):

indegrees = new HashMap<Vertex, Integer>()
visited = new HashSet<Vertex>()

output = new AnyList<Vertex>()

compute all indegrees and add to dictionary

while (we still need to visit vertices):
current = getNextVertex(indegrees, visited)
add current to both visited and output

for (v : current.allNeighbors()):
indegrees[v] -= 1

return output

getNextVertex(indegrees, visited):
for (node, num : indegrees):
if (num == 0 and node not in visited):
return node
10

Topological sort: Algorithm

One

def

def

possible implementation:

toposort(graph): Questions:
indegrees = new HashMap<Vertex, Integer>() W e ms LT
visited = new HashSet<Vertex>()

output = new AnyList<Vertex>()

compute all indegrees and add to dictionary

while (we still need to visit vertices):
current = getNextVertex(indegrees, visited)
add current to both visited and output

for (v : current.allNeighbors()):
indegrees[v] -= 1

return output

getNextVertex(indegrees, visited):
for (node, num : indegrees):
if (num == 0 and node not in visited):
return node
10

Topological sort: Algorithm

One

def

def

possible implementation:

toposort(graph): Questions:
indegrees = new HashMap<Vertex, Integer>() Worst-case runtime?
visited = new HashSet<Vertex>()

output = new AnylList<Vertex>() O (‘ \/|2 + |E|)

compute all indegrees and add to dictionary

while (we still need to visit vertices):
current = getNextVertex(indegrees, visited)
add current to both visited and output

for (v : current.allNeighbors()):
indegrees[v] -= 1

return output

getNextVertex(indegrees, visited):
for (node, num : indegrees):
if (num == 0 and node not in visited):
return node
10

Topological sort: Algorithm

One

def

def

possible implementation:

toposort(graph): Questions:
indegrees = new HashMap<Vertex, Integer>() Worst-case runtime?
visited = new HashSet<Vertex>() ’

output = new AnylList<Vertex>() O (‘ \/|2 + |E|)
compute all indegrees and add to dictionary

while (we still need to visit vertices): Is this optimal?
current = getNextVertex(indegrees, visited)
add current to both visited and output

for (v : current.allNeighbors()):
indegrees[v] -= 1

return output

getNextVertex(indegrees, visited):
for (node, num : indegrees):
if (num == 0 and node not in visited):
return node
10

Topological sort: Algorithm

One possible implementation:

def toposort(graph):
indegrees = new HashMap<Vertex, Integer>()
visited = new HashSet<Vertex>()
output = new AnyList<Vertex>()

compute all indegrees and add to dictionary

while (we still need to visit vertices):
current = getNextVertex(indegrees, visited)
add current to both visited and output

for (v : current.allNeighbors()):
indegrees[v] -= 1

return output

def getNextVertex(indegrees, visited):
for (node, num : indegrees):
if (num == 0 and node not in visited):
return node

Questions:
Worst-case runtime?

O (|V[* +|E])

Is this optimal?

Maybe not. Do
we really need to
look at each node
multiple times? Can
we somehow get
O (V| +]E))?

10

Topological sort: Algorithm

def

def

toposort(graph):

indegrees = new HashMap<Vertex, Integer>()

visited = new HashSet<Vertex>()

output = new AnyList<Vertex>()

compute all indegrees and add to dictionary

while (we still need to visit vertices):
current = getNextVertex(indegrees, visited)
add current to both visited and output
for (v : current.allNeighbors()):

indegrees[v] -= 1
return output

getNextVertex(indegrees, visited):
for (node, num : indegrees):
if (num == 0 and node not in visited):
return node

How can we improve this?

11

Topological sort: Algorithm

def toposort(graph):

indegrees = new HashMap<Vertex, Integer>()

visited = new HashSet<Vertex>()

output = new AnyList<Vertex>()

compute all indegrees and add to dictionary

while (we still need to visit vertices):
current = getNextVertex(indegrees, visited)
add current to both visited and output
for (v : current.allNeighbors()):

indegrees[v] -= 1
return output

def getNextVertex(indegrees, visited):
for (node, num : indegrees):
if (num == 0 and node not in visited):
return node

How can we improve this?

» Can we get rid of the inner loop somehow?

» Would using different/more data structures help?

» Can we collect additional information somewhere else? u

Topological sort: Algorithm 2

Insight: When we're updating the indegrees, we already know
which nodes now have an indegree of zero!

12

Topological sort: Algorithm 2

Insight: When we're updating the indegrees, we already know
which nodes now have an indegree of zero!

Why are we discarding and recomputing that info? Let’s just use it!

12

Topological sort: Algorithm 2

Insight: When we're updating the indegrees, we already know
which nodes now have an indegree of zero!

Why are we discarding and recomputing that info? Let’s just use it!

def toposort(graph):
indegrees = new HashMap<Vertex, Integer>()
visited = new HashSet<Vertex>()
output = new AnyList<Vertex>()
stack = new Stack<Vertex>();

compute all indegrees and add to dictionary

while (we still need to visit vertices):
current = stack.pop()
add current to both visited and output

for (v : current.allNeighbors()):
indegrees[v] -= 1
if (indegrees[v] == 0):
stack.push(v)

return output
12

Topological sort: Algorithm 2

def toposort(graph):
indegrees = new HashMap<Vertex, Integer>()
visited = new HashSet<Vertex>()
output = new AnyList<Vertex>()
stack = new Stack<Vertex>();

compute all indegrees and add to dictionary

while (we still need to visit vertices):
current = stack.pop()
add current to both visited and output

for (v : current.allNeighbors()):
indegrees[v] -= 1
if (indegrees[v] == 0):
stack.push(v)
return output

13

Topological sort: Algorithm 2

def toposort(graph):
indegrees = new HashMap<Vertex, Integer>()
visited = new HashSet<Vertex>()
output = new AnyList<Vertex>()
stack = new Stack<Vertex>();

compute all indegrees and add to dictionary

while (we still need to visit vertices):
current = stack.pop()
add current to both visited and output

for (v : current.allNeighbors()):
indegrees[v] -= 1
if (indegrees[v] == 0):
stack.push(v)
return output

Question: Does this actually work?

13

Topological sort: Algorithm 2

def toposort(graph):
indegrees = new HashMap<Vertex, Integer>()
visited = new HashSet<Vertex>()
output = new AnyList<Vertex>()
stack = new Stack<Vertex>();

compute all indegrees and add to dictionary

while (we still need to visit vertices):
current = stack.pop()
add current to both visited and output

for (v : current.allNeighbors()):
indegrees[v] -= 1
if (indegrees[v] == 0):
stack.push(v)
return output

Question: Does this actually work?

Answer: No, there's a bug! The stack is initially empty, so first

pop fails. -

Topological sort: Algorithm 2

def toposort(graph):
indegrees = new HashMap<Vertex, Integer>()
visited = new HashSet<Vertex>()
output = new AnyList<Vertex>()
stack = new Stack<Vertex>();

compute all indegrees and add to dictionary
also add all nodes with indegree zero to stack

while (we still need to visit vertices):
current = stack.pop()
add current to both visited and output

for (v : current.allNeighbors()):
indegrees[v] -= 1
if (indegrees[v] == 0):
stack.push(v)
return output

14

Topological sort: Algorithm 2

def toposort(graph):
indegrees = new HashMap<Vertex, Integer>()
visited = new HashSet<Vertex>()
output = new AnyList<Vertex>()
stack = new Stack<Vertex>();

compute all indegrees and add to dictionary
also add all nodes with indegree zero to stack

while (we still need to visit vertices):
current = stack.pop()
add current to both visited and output

for (v : current.allNeighbors()):
indegrees[v] -= 1
if (indegrees[v] == 0):
stack.push(v)
return output

Question: Can we improve this algorithm even more?

14

Topological sort: Algorithm 2

def toposort(graph):
indegrees = new HashMap<Vertex, Integer>()
visited = new HashSet<Vertex>()
output = new AnyList<Vertex>()
stack = new Stack<Vertex>();

compute all indegrees and add to dictionary
also add all nodes with indegree zero to stack

while (we still need to visit vertices):
current = stack.pop()
add current to both visited and output

for (v : current.allNeighbors()):
indegrees[v] -= 1
if (indegrees[v] == 0):
stack.push(v)
return output

Question: Can we improve this algorithm even more?

Answer: Why do we need the visited set?
14

Topological sort: Algorithm 2

def toposort(graph):
indegrees = new HashMap<Vertex, Integer>()
output = new AnyList<Vertex>()
stack = new Stack<Vertex>();

compute all indegrees and add to dictionary
also add all nodes with indegree zero to stack

while (we still need to visit vertices):
current = stack.pop()
add current to output

for (v : current.allNeighbors()):
indegrees[v] -= 1
if (indegrees[v] == 0):
stack.push(v)
return output

15

Topological sort: Algorithm 2

def toposort(graph):
indegrees = new HashMap<Vertex, Integer>()
output = new AnyList<Vertex>()
stack = new Stack<Vertex>();

compute all indegrees and add to dictionary
also add all nodes with indegree zero to stack

while (we still need to visit vertices):
current = stack.pop()
add current to output

for (v : current.allNeighbors()):
indegrees[v] -= 1
if (indegrees[v] == 0):
stack.push(v)
return output

Question: What's the worst-case runtime now?

15

Topological sort: Algorithm 2

def toposort(graph):
indegrees = new HashMap<Vertex, Integer>()
output = new AnyList<Vertex>()
stack = new Stack<Vertex>();

compute all indegrees and add to dictionary
also add all nodes with indegree zero to stack

while (we still need to visit vertices):
current = stack.pop()
add current to output

for (v : current.allNeighbors()):
indegrees[v] -= 1
if (indegrees[v] == 0):
stack.push(v)
return output

Question: What's the worst-case runtime now?

Answer: O (|V|+ |E|)

15

Minimum spanning trees

And now, for something completely different...

16

Minimum spanning trees

Punchline: a MST of a graph connects all the vertices together
while minimizing the number of edges used (and their weights).
Minimum spanning trees

Given a connected, undirected graph G = (V, E), a minimum
spanning tree is a subgraph G' = (V' E’) such that...

17

Minimum spanning trees

Punchline: a MST of a graph connects all the vertices together
while minimizing the number of edges used (and their weights).

Minimum spanning trees
Given a connected, undirected graph G = (V, E), a minimum
spanning tree is a subgraph G' = (V' E’) such that...

» V = V' (G is spanning)

17

Minimum spanning trees

Punchline: a MST of a graph connects all the vertices together
while minimizing the number of edges used (and their weights).

Minimum spanning trees
Given a connected, undirected graph G = (V, E), a minimum
spanning tree is a subgraph G' = (V' E’) such that...

» V = V' (G is spanning)

» There exists a path from any vertex to any other one

17

Minimum spanning trees

Punchline: a MST of a graph connects all the vertices together
while minimizing the number of edges used (and their weights).

Minimum spanning trees

Given a connected, undirected graph G = (V, E), a minimum
spanning tree is a subgraph G' = (V' E’) such that...

» V = V' (G is spanning)

» There exists a path from any vertex to any other one

» The sum of the edge weights in E’ is minimized.

17

Minimum spanning trees

Punchline: a MST of a graph connects all the vertices together
while minimizing the number of edges used (and their weights).

Minimum spanning trees

Given a connected, undirected graph G = (V, E), a minimum
spanning tree is a subgraph G' = (V' E’) such that...

» V = V' (G is spanning)

» There exists a path from any vertex to any other one

» The sum of the edge weights in E’ is minimized.

In order for a graph to have a MST, the graph must...

» ...be connected — there is a path from a vertex to any other
vertex. (Note: this means |V/| < |E|).
» ...be undirected. 17

Minimum spanning trees: example

An example of an minimum spanning tree (MST):

18

Minimum spanning trees: Applications

Example questions:

> We want to connect phone lines to houses, but laying down
cable is expensive. How can we minimize the amount of wire
we must install?

19

Minimum spanning trees: Applications

Example questions:

> We want to connect phone lines to houses, but laying down
cable is expensive. How can we minimize the amount of wire
we must install?

> We have items on a circuit we want to be “electrically
equivalent”. How can we connect them together using a

minimum amount of wire?

19

Minimum spanning trees: Applications

Example questions:

> We want to connect phone lines to houses, but laying down
cable is expensive. How can we minimize the amount of wire
we must install?

> We have items on a circuit we want to be “electrically
equivalent”. How can we connect them together using a

minimum amount of wire?

Other applications:

19

Minimum spanning trees: Applications

Example questions:

> We want to connect phone lines to houses, but laying down
cable is expensive. How can we minimize the amount of wire
we must install?

> We have items on a circuit we want to be “electrically
equivalent”. How can we connect them together using a

minimum amount of wire?
Other applications:

» Implement efficient multiple constant multiplication

» Minimizing number of packets transmitted across a network
» Machine learning (e.g. real-time face verification)

» Graphics (e.g. image segmentation)

19

Minimum spanning trees: properties

Some questions...

» Can a valid MST contain a cycle?

» If we take a valid MST and remove an edge, is it still an MST?

» If we take a valid MST and add an edge, is it still an MST?

P If there are V vertices, how many edges are contained in the
minimum spanning tree?

20

Minimum spanning trees: properties

Some questions...

» Can a valid MST contain a cycle?
Answer: no. If there's a cycle, we can always remove one edge
to break the cycle while still leaving all nodes connected.

» If we take a valid MST and remove an edge, is it still an MST?
Answer: No. If we're already using the fewest edges possible,
removing an edge would make the nodes no longer connected.

» If we take a valid MST and add an edge, is it still an MST?
Answer: No. Since all the edges are already connected, this
would introduce a cycle.

P If there are V vertices, how many edges are contained in the
minimum spanning tree?
Answer: |V|—1 20

Minimum spanning trees: algorithm

Design question: how would you implement an algorithm to find
the MST of some graph, assuming the edges all have the same
weight?

21

Minimum spanning trees: algorithm

Design question: how would you implement an algorithm to find
the MST of some graph, assuming the edges all have the same
weight?

One idea: run DFS, and keep all the edges that don't connect
back to an already-visited vertex.

Another idea: iterate through the edges, and add an edge as long
as it doesn’t introduce a cycle.

21

Minimum spanning tree: coming up next

Next time:

How do we account for edge weights?

» Prim’s algorithm: Traverse through graph, and add nodes

22

Minimum spanning tree: coming up next

Next time:

How do we account for edge weights?

» Prim’s algorithm: Traverse through graph, and add nodes
» Kruskal’'s algorithm: Iterate through edges, and add edges

22

Minimum spanning tree: coming up next

Next time:

How do we account for edge weights?

» Prim’s algorithm: Traverse through graph, and add nodes
» Kruskal’'s algorithm: Iterate through edges, and add edges

In both cases, we avoid adding nodes/edges that introduce a cycle,
and need to figure out how to pick the “best” node or edge.

22

