Topological sort

Design question: suppose we have a bunch of classes with pre-requisites:

CSE142
CSE143
MATH 126
CSE373
CSE374
CSE410
CSE413
CSE415
XYZ

Goal: list out classes in a "valid" order
For example: 126, 142, 143, 374, 373, 417, 410, 413, XYZ, 415

Questions

▶ Can we perform topo-sort on graphs containing cycles?
 No: how do we decide which node comes first?
▶ Is there always one unique output per graph?
 No: see example on inked slides

Topological sort: algorithm

Intuition:

▶ The only nodes we can start with are also nodes that have in-degree 0
▶ So, start by adding those to the list
▶ Is there some way of "repeating" this process?
Topological sort: Example 1

Example again:

```
CSE142: 0
CSE143: 210
MATH126: 0
CSE373: 10
CSE374: 10
CSE413: 10
CSE410: 10
CSE417: 10
CSE415: 10
XYZ: 3210
```

Output: CSE142, MATH126, CSE143, CSE374, CSE373, CSE413, CSE410, XYZ, CSE417, CSE415

Topological sort: Example 2

Now you try. List one possible output:

```
a
b
c
d
e
g
h
f
i
j
k
```

One possible answer: a, b, g, c, e, h, d, i, f, j, k

Topological sort: Algorithm

Our algorithm so far:

Setup

► Look at each vertex and record its in-degree somewhere

Core loop

► Choose an arbitrary vertex a with in-degree 0
► Output a and conceptually remove it from the graph
► For each vertex b adjacent to a, decrement the in-degree of b
► Repeat

Topological sort: Algorithm

```
def toposort(graph):
    indegrees = new HashMap<Vertex, Integer>()
    visited = new HashSet<Vertex>()
    output = new AnyList<Vertex>()
    compute all indegrees and add to dictionary
    while (we still need to visit vertices):
        current = getNextVertex(indegrees, visited)
        add current to both visited and output
        for (v : current.allNeighbors()):
            indegrees[v] -= 1
        return output

def getNextVertex(indegrees, visited):
    for (node, num : indegrees):
        if (num == 0 and node not in visited):
            return node
```

How can we improve this?

► Can we get rid of the inner loop somehow?
► Would using different/more data structures help?
► Can we collect additional information somewhere else?

Topological sort: Algorithm 2

Insight: When we’re updating the indegrees, we already know which nodes now have an indegree of zero!

Why are we discarding and recomputing that info? Let’s just use it!

```
def toposort(graph):
    indegrees = new HashMap<Vertex, Integer>()
    visited = new HashSet<Vertex>()
    stack = new Stack<Vertex>()
    compute all indegrees and add to dictionary
    while (we still need to visit vertices):
        current = getNextVertex(indegrees, visited)
        add current to both visited and output
        for (v : current.allNeighbors()):
            indegrees[v] -= 1
        if (indegrees[v] == 0):
            stack.push(v)
    return output
```

Questions:

Worst-case runtime?

$O(|V|^2 + |E|)$

Is this optimal?

Maybe not. Do we really need to look at each node multiple times? Can we somehow get $O(|V| + |E|)$?
def toposort(graph):
 indegrees = new HashMap<Vertex, Integer>()
 visited = new HashSet<Vertex>()
 output = new AnyList<Vertex>()
 stack = new Stack<Vertex>();
 compute all indegrees and add to dictionary
 while (we still need to visit vertices):
 current = stack.pop()
 add current to both visited and output
 for (v : current.allNeighbors()):
 indegrees[v] -= 1
 if (indegrees[v] == 0):
 stack.push(v)
 return output

Question: Does this actually work?
Answer: No, there's a bug! The stack is initially empty, so first pop fails.

Minimum spanning trees
Punchline: A MST of a graph connects all the vertices together while minimizing the number of edges used (and their weights).

Minimum spanning trees
Given a connected, undirected graph $G = (V, E)$, a minimum spanning tree is a subgraph $G' = (V', E')$ such that...
- $V = V'$ (G' is spanning)
- There exists a path from any vertex to any other one
- The sum of the edge weights in E' is minimized.

In order for a graph to have a MST, the graph must...
- be connected – there is a path from a vertex to any other vertex. (Note: this means $|V| \leq |E|$).
- be undirected.
Minimum spanning trees: Applications

Example questions:
- We want to connect phone lines to houses, but laying down cable is expensive. How can we minimize the amount of wire we must install?
- We have items on a circuit we want to be “electrically equivalent”. How can we connect them together using a minimum amount of wire?

Other applications:
- Implement efficient multiple constant multiplication
- Minimizing number of packets transmitted across a network
- Machine learning (e.g. real-time face verification)
- Graphics (e.g. image segmentation)

Minimum spanning trees: properties

Some questions...
- Can a valid MST contain a cycle?
 Answer: no. If there’s a cycle, we can always remove one edge to break the cycle while still leaving all nodes connected.
- If we take a valid MST and remove an edge, is it still an MST?
 Answer: No. If we’re already using the fewest edges possible, removing an edge would make the nodes no longer connected.
- If we take a valid MST and add an edge, is it still an MST?
 Answer: No. Since all the edges are already connected, this would introduce a cycle.
- If there are \(V\) vertices, how many edges are contained in the minimum spanning tree?
 Answer: \(|V| - 1\)

Minimum spanning trees: algorithm

Design question: how would you implement an algorithm to find the MST of some graph, assuming the edges all have the same weight?

One idea: run DFS, and keep all the edges that don’t connect back to an already-visited vertex.

Another idea: iterate through the edges, and add an edge as long as it doesn’t introduce a cycle.

Minimum spanning tree: coming up next

Next time:
How do we account for edge weights?

- Prim’s algorithm: Traverse through graph, and add nodes
- Kruskal’s algorithm: Iterate through edges, and add edges

In both cases, we avoid adding nodes/edges that introduce a cycle, and need to figure out how to pick the “best” node or edge.