CSE 373: More on Dijkstra’s algorithm

Michael Lee
Wednesday, Feb 21, 2018
Dijkstra’s algorithm

Initialization:

1. Assign each node an initial cost of ∞
2. Set our starting node’s cost to 0
Dijkstra’s algorithm

Initialization:

1. Assign each node an initial cost of ∞
2. Set our starting node’s cost to 0

Core loop:

1. Get the next (unvisited) node that has the smallest cost
2. Update all adjacent vertices (if applicable)
3. Mark current node as “visited”
Dijkstra’s algorithm

Initialization:

1. Assign each node an initial cost of ∞
2. Set our starting node’s cost to 0

Core loop:

1. Get the next (unvisited) node that has the smallest cost
2. Update all adjacent vertices (if applicable)
3. Mark current node as “visited”

Idea: *Greedy*ly pick node with smallest cost, then update everything possible. Repeat.
Metaphor: Treat edges as canals and edge weights as distance. Imagine opening a dam at the starting node. How long does it take for the water to reach each vertex?
Dijkstra’s algorithm

Metaphor: Treat edges as canals and edge weights as distance. Imagine opening a dam at the starting node. How long does it take for the water to reach each vertex?

Caveat: Dijkstra’s algorithm only guaranteed to work for graphs with no negative edge weights.
Dijkstra’s algorithm

Metaphor: Treat edges as canals and edge weights as distance. Imagine opening a dam at the starting node. How long does it take for the water to reach each vertex?

Caveat: Dijkstra’s algorithm only guaranteed to work for graphs with no negative edge weights.

Pronunciation: DYKE-struh (“dijk” rhymes with “bike”)

Dijkstra’s algorithm

Suppose we start at vertex “a”:

And we’re done! Now, to find the shortest path, from a to a node, start at the end, trace the red arrows backwards, and reverse the list.
Dijkstra’s algorithm

Suppose we start at vertex “a”:

We initially assign all nodes a cost of infinity.
Dijkstra’s algorithm

Suppose we start at vertex “a”:

Next, assign the starting node a cost of 0.
Suppose we start at vertex “a”:

Next, update all adjacent node costs as well as the backpointers.
Dijkstra’s algorithm

Suppose we start at vertex “a”:

The pending node with the smallest cost is c, so we visit that next.
Dijkstra’s algorithm

Suppose we start at vertex “a”:

We consider all adjacent nodes. a is fixed, so we only need to update e. Note the new cost of e is the sum of the weights for $a - c$ and $c - e$.

And we’re done! Now, to find the shortest path, from a to a node, start at the end, trace the red arrows backwards, and reverse the list.
Dijkstra’s algorithm

Suppose we start at vertex “a”:

\[a \]
\[d \]
\[c \]
\[b \]
\[f \]
\[h \]
\[g \]

\[b \] is the next pending node with smallest cost.
Dijkstra’s algorithm

Suppose we start at vertex “a”:

The adjacent nodes are c, e, and f. The only node where we can update the cost is f. Note the route a – b – e has the same cost as a – c – e, so there’s no point in updating the backpointer to e.
Dijkstra’s algorithm

Suppose we start at vertex “a”:

Both d and f have the same cost, so let’s (arbitrarily) pick d next. Note that we can’t adjust any of our neighbors.
Suppose we start at vertex “a”:

Next up is f.
Dijkstra’s algorithm

Suppose we start at vertex “a”:

The only neighbor we is h.
Dijkstra’s algorithm

Suppose we start at vertex “a”:

h has the smallest cost now.
Dijkstra’s algorithm

Suppose we start at vertex “a”:

We update g.

And we’re done! Now, to find the shortest path, from a to a node, start at the end, trace the red arrows backwards, and reverse the list.
Dijkstra’s algorithm

Suppose we start at vertex “a”:

Next up is g.
Dijkstra’s algorithm

Suppose we start at vertex “a”:

The two adjacent nodes are f and e. f is fixed so we leave it alone. We however will update e: our current route is cheaper then the previous route, so we update both the cost and the backpointer.
Dijkstra’s algorithm

Suppose we start at vertex “a”:

The last pending node is e. We visit it, and check for any unfixed adjacent nodes (there are none).
Dijkstra’s algorithm

Suppose we start at vertex “a”:

And we’re done! Now, to find the shortest path, from a to a node, start at the end, trace the red arrows backwards, and reverse the list.
Dijkstra’s algorithm

Core idea in simplified pseudocode:

```python
def dijkstra(start):
    for (v : vertices):
        set cost(v) to infinity
    set cost(start) to 0

    while (we still have unvisited nodes):
        current = get next smallest node

        for (edge : current.getOutEdges()):
            newCost = min(cost(current) + edge.cost, cost(edge.dest))
            update cost(edge.dest) to newCost, update backpointers, etc

    return backpointers dictionary
```
Dijkstra’s algorithm

One implementation: inserting extra values into heap

```python
def dijkstra(start):
    backpointers = empty Dictionary of vertex to vertex
    costs = Dictionary of vertex to double, initialized to infinity
    visited = empty Set

    heap = new Heap<Node with cost>();
    heap.put([start, 0])
    cost.put(start, 0)

    while (heap is not empty):
        current, currentCost = heap.removeMin()
        skip if visited.contains(current), else visited.add(current)

        for (edge : current.getOutEdges()):
            skip if visited.contains(edge.dest), else visited.add(edge.dest)

            if (newCost < cost.get(edge.dest)):
                cost.put(edge.dest, newCost)
                heap.insert([edge.dest, newCost])
            
        backpointers.put(edge.dest, current)

    return backpointers dictionary
```

return backpointers dictionary
Dijkstra’s algorithm

Another impl: after implementing decreasePriority

```python
def dijkstra(start):
    backpointers = empty Dictionary of vertex to vertex
    costs = empty Dictionary of vertex to double

    heap = new Heap<Node with cost>();
    for (v : vertices):
        heap.put([v, infinity])
        costs.put(v, infinity)

    heap.decreasePriority([start, 0])
    costs.put(start, 0)

    while (heap is not empty):
        current, currentCost = heap.removeMin()
        for (edge : current.getOutEdges()):
            newCost = currentCost + edge.cost
            if (newCost < cost.get(edge.dest)):
                cost.put(edge.dest, newCost)
                heap.decreaseKey([edge.dest, newCost])
                backpointers.put(edge.dest, current)

    return backpointers dictionary
```

What does Dijkstra’s algorithm do when run on vertex \(a \)?

set up:
- set all costs to \(\infty \)
- set \(a \)'s cost to 0

core loop
1. find node \(u \) with smallest cost
2. update neighbors
3. repeat
What does Dijkstra’s algorithm do when run on vertex \(a \)?
What does Dijkstra’s algorithm do when run on vertex a?
What does Dijkstra’s algorithm do when run on vertex a?
What does Dijkstra’s algorithm do when run on vertex a?
What does Dijkstra’s algorithm do when run on vertex a?
What does Dijkstra’s algorithm do when run on vertex a?
What does Dijkstra’s algorithm do when run on vertex \(a \)?
What does Dijkstra’s algorithm do when run on vertex a?
What does Dijkstra’s algorithm do when run on vertex a?
What does Dijkstra’s algorithm do when run on vertex a?
What does Dijkstra’s algorithm do when run on vertex a?
What does Dijkstra’s algorithm do when run on vertex a?
Project 1, part 2 regrades will be released later tonight

Project 3, part 1 grades also released later tonight

Reminder: if you fix the errors in your Friday submission, you can get up to half credit back.
Project 1, part 2 regrades will be released later tonight

Project 3, part 1 grades also released later tonight

Reminder: if you fix the errors in your Friday submission, you can get up to half credit back.

If you’ve emailed me, and you haven’t heard back, email me again.
Rough intuition:

▶ Suppose a is the next unvisited node with the smallest cost. Suppose b is some unvisited vertex adjacent to a. The quickest path from the start to b is going to be through a. Any other route would be a longer detour (assuming edges are positive!). So, picking the shortest node will always accurately update the adjacent nodes. (Full proof beyond scope of class)
Dijkstra’s: why does it work?

Rough intuition:

- Suppose \(a \) is the next unvisited node with the smallest cost. Suppose \(b \) is some unvisited vertex adjacent to \(a \).
- The quickest path from the start to \(b \) is going to be through \(a \). Any other route would be a longer detour (assuming edges are positive!).
Dijkstra’s: why does it work?

Rough intuition:

- Suppose \(a \) is the next unvisited node with the smallest cost. Suppose \(b \) is some unvisited vertex adjacent to \(a \).
- The quickest path from the start to \(b \) is going to be through \(a \). Any other route would be a longer detour (assuming edges are positive!).
- So, picking the shortest node will always accurately update the adjacent nodes.
Rough intuition:

- Suppose a is the next unvisited node with the smallest cost. Suppose b is some unvisited vertex adjacent to a.
- The quickest path from the start to b is going to be through a. Any other route would be a longer detour (assuming edges are positive!).
- So, picking the shortest node will always accurately update the adjacent nodes.

(Full proof beyond scope of class)
What if we have negative edges?

Question: What’s the shortest path from s to t according to Dijkstra’s? In reality?
Dijkstra’s: negative edges

What’s the shortest path now?

![Graph with nodes s, a, b, c, t and edges with weights -1, 5]
Dijkstra’s: negative edges

Punchline:

- If there are negative edges, Dijkstra’s doesn’t work
 (There exist other algorithms that can handle negative edges
 – e.g. see Bellman-Ford.)
Punchline:

▸ If there are negative edges, Dijkstra’s doesn’t work
 (There exist other algorithms that can handle negative edges
 – e.g. see Bellman-Ford.)

▸ If there are negative cycles, nothing works
Punchline:

- If there are negative edges, Dijkstra’s doesn’t work
 (There exist other algorithms that can handle negative edges
 – e.g. see Bellman-Ford.)
- If there are negative *cycles*, nothing works

(Where do negative edges show up? Examples: modeling credit
and debit, modeling flow of energy, etc.)
Question: what is the worst-case runtime of Dijkstra’s algorithm?
Dijkstra’s algorithm: analyzing runtime

Question: what is the worst-case runtime of Dijkstra’s algorithm?

Strategy 1: Analyze the code, like we’ve been doing all quarter

Strategy 2: Analyze the algorithm more holistically, like we did for DFS and BFS
Consider this (simplified) pseudocode. How do we analyze?

```python
def dijkstra(start):
    for (v : vertices):
        set cost(v) to infinity
    set cost(start) to 0

    while (we still have unvisited nodes):
        current = get next smallest node

        for (edge : current.getOutEdges()):
            newCost = min(cost(current) + edge.cost, cost(edge.dest))
            update cost(edge.dest) to newCost, update backpointers, etc

    return backpointers dictionary
```
Consider this (simplified) pseudocode. How do we analyze?

```python
def dijkstra(start):
    for (v : vertices):
        set cost(v) to infinity
        set cost(start) to 0
    while (we still have unvisited nodes):
        current = get next smallest node
        for (edge : current.getOutEdges()):
            newCost = min(cost(current) + edge.cost, cost(edge.dest))
            update cost(edge.dest) to newCost, update backpointers, etc
    return backpointers dictionary
```

(Note: let t_s be the time needed to get the next smallest node, and let t_u be the time needed to update vertex costs. We’ll treat these as unknowns for now.)
Dijkstra’s algorithm: analyzing runtime via code

Things we know:

- Initialization takes $O(|V|)$ time
- The while loop repeats $|V|$ times
- The inner foreach loop repeats $|E|$ times (???)?
- The inner foreach loop does $O(t_u)$ work per iteration
- So while loop does $O(t_s + |E| \cdot t_u)$ work per iteration
Dijkstra’s algorithm: analyzing runtime via code

Things we know:

- Initialization takes $O(|V|)$ time
- The while loop repeats $|V|$ times
- The inner foreach loop repeats $|E|$ times (???)?
- The inner foreach loop does $O(t_u)$ work per iteration
- So while loop does $O(t_s + |E| \cdot t_u)$ work per iteration

Final runtime:

$$O(|V| + |V| \cdot (t_s + |E| \cdot t_u))$$
Dijkstra’s algorithm: analyzing runtime via code

Things we know:

- Initialization takes $\mathcal{O}(|V|)$ time
- The while loop repeats $|V|$ times
- The inner foreach loop repeats $|E|$ times (???)?
- The inner foreach loop does $\mathcal{O}(t_u)$ work per iteration
- So while loop does $\mathcal{O}(t_s + |E| \cdot t_u)$ work per iteration

Final runtime:

$$\mathcal{O}(|V| + |V| \cdot (t_s + |E| \cdot t_u))$$

Distribute:

$$\mathcal{O}(|V| + |V| \cdot t_s + |V| \cdot |E| \cdot t_u)$$
Dijkstra’s algorithm: analyzing runtime via code

Things we know:

- Initialization takes $O(|V|)$ time
- The while loop repeats $|V|$ times
- The inner foreach loop repeats $|E|$ times (???)?
- The inner foreach loop does $O(t_u)$ work per iteration
- So while loop does $O(t_s + |E| \cdot t_u)$ work per iteration

Final runtime:

$$O(|V| + |V| \cdot (t_s + |E| \cdot t_u))$$

Distribute:

$$O(|V| + |V| \cdot t_s + |V| \cdot |E| \cdot t_u)$$

The lone $|V|$ is dominated by $|V| \cdot t_s$:

$$O(|V| \cdot t_s + |V| \cdot |E| \cdot t_u)$$
Dijkstra’s algorithm: analyzing runtime

Our runtime:

\[O(|V| \cdot t_s + |V| \cdot |E| \cdot t_u) \]
Dijkstra’s algorithm: analyzing runtime

Our runtime:

\[O(|V| \cdot t_s + |V| \cdot |E| \cdot t_u) \]

Question:

Do we really need to update vertex costs \(|V| \cdot |E|\) times?

\[\begin{align*}
\text{while} \ (\text{we still have unvisited nodes}) : \\
\quad &\text{current} = \text{get next smallest node} \\
\quad &\text{for} \ (\text{edge} : \text{current.getOutEdges}()) : \\
&\quad \text{newCost} = \min(\text{cost(current)} + \text{edge.cost}, \text{cost(edge.dest)}) \\
&\quad \text{update cost(edge.dest) to newCost, update backpointers, etc}
\end{align*}\]
while (we still have unvisited nodes):
 current = get next smallest node

 for (edge : current.getOutEdges()):
 newCost = min(cost(current) + edge.cost, cost(edge.dest))
 update cost(edge.dest) to newCost, update backpointers, etc

Observations about the foreach loop:
Dijkstra’s algorithm: analyzing runtime

\[
\text{while (we still have unvisited nodes):} \\
\quad \text{current} = \text{get next smallest node}
\]

\[
\text{for (edge : current.getOutEdges()):} \\
\quad \text{newCost} = \min(\text{cost(current)} + \text{edge.cost}, \text{cost(edge.dest)}) \\
\quad \text{update cost(edge.dest) to newCost, update backpointers, etc}
\]

Observations about the foreach loop:

▶ We don’t know how many times it runs per each iteration
Dijkstra’s algorithm: analyzing runtime

```python
while (we still have unvisited nodes):
    current = get next smallest node

    for (edge : current.getOutEdges()):
        newCost = min(cost(current) + edge.cost, cost(edge.dest))
        update cost(edge.dest) to newCost, update backpointers, etc
```

Observations about the foreach loop:

- We don’t know how many times it runs **per** each iteration
- ...but we do know num times it runs across **all** iterations!
Dijkstra’s algorithm: analyzing runtime

while (we still have unvisited nodes):
 current = get next smallest node

for (edge : current.getOutEdges()):
 newCost = \min\(\)\(\text{cost(current)} + \text{edge.cost}, \text{cost(\text{edge}.\text{dest})}\)
 update \(\text{cost(\text{edge}.\text{dest})}\) to \(\text{newCost}\), update backpointers, etc

Observations about the foreach loop:

▷ We don’t know how many times it runs \textbf{per} each iteration
▷ ...but we do know num times it runs across \textbf{all} iterations!

Original bound:

\[
\mathcal{O}\left(\mid V \mid \cdot t_s + \mid V \mid \cdot \mid E \mid \cdot t_u\right)
\]
Dijkstra’s algorithm: analyzing runtime

while (we still have unvisited nodes):
 current = get next smallest node

 for (edge : current.getOutEdges()):
 newCost = min(cost(current) + edge.cost, cost(edge.dest))
 update cost(edge.dest) to newCost, update backpointers, etc

Observations about the foreach loop:

- We don’t know how many times it runs per each iteration
- ...but we do know num times it runs across all iterations!

Original bound:
\[\mathcal{O}(|V| \cdot t_s + |V| \cdot |E| \cdot t_u) \]

We update at most once per edge – so, a tighter bound:
\[\mathcal{O}(|V| \cdot t_s + |E| \cdot t_u) \]
Our runtime so far:

$$O(|V| \cdot t_s + |E| \cdot t_u)$$
Our runtime so far:

\[O(|V| \cdot t_s + |E| \cdot t_u) \]

Question: So, what exactly is \(t_s \) and \(t_u \)?
Our runtime so far:

$$\mathcal{O} (|V| \cdot t_s + |E| \cdot t_u)$$

Question: So, what exactly is t_s and t_u?

Answer: Depends on how we store nodes and costs!
Observation: there are two operations we care about: finding the node with the min cost, and given a node, updating its cost
Observation: there are two operations we care about: finding the node with the min cost, and given a node, updating its cost

Ideas:

- Use a binary heaps: lets us find a node with min cost easily
- Use a dictionary: lets us update the value corresponding to a node easily
Dijkstra’s algorithm: finding and updating nodes

Observation: there are two operations we care about: finding the node with the min cost, and given a node, updating its cost

Ideas:

- Use a binary heaps: lets us find a node with min cost easily
Dijkstra’s algorithm: finding and updating nodes

Observation: there are two operations we care about: finding the node with the min cost, and given a node, updating its cost

Ideas:

- Use a binary heaps: lets us find a node with min cost easily
- Use a dictionary: lets us update the value corresponding to a node easily
Dijkstra’s algorithm: finding and updating nodes

Exercise: fill out this table

<table>
<thead>
<tr>
<th>Data structure</th>
<th>Remove min ((t_s))</th>
<th>Update cost ((t_u))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hash map</td>
<td>(O(</td>
<td>V</td>
</tr>
<tr>
<td>Sorted array</td>
<td>(O(1))</td>
<td>(O(</td>
</tr>
<tr>
<td>AVL tree</td>
<td>(O(\log</td>
<td>V</td>
</tr>
<tr>
<td>Binary heap</td>
<td>(O(\log</td>
<td>V</td>
</tr>
</tbody>
</table>
Exercise: fill out this table

<table>
<thead>
<tr>
<th>Data structure</th>
<th>Remove min (t_s)</th>
<th>Update cost (t_u)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hash map</td>
<td>$O(</td>
<td>V</td>
</tr>
<tr>
<td>Sorted array</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVL tree</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Binary heap</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Dijkstra’s algorithm: finding and updating nodes

Exercise: fill out this table

<table>
<thead>
<tr>
<th>Data structure</th>
<th>Remove min ((t_s))</th>
<th>Update cost ((t_u))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hash map</td>
<td>(O(</td>
<td>V</td>
</tr>
<tr>
<td>Sorted array</td>
<td>(O(1))</td>
<td>(O(</td>
</tr>
<tr>
<td>AVL tree</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Binary heap</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Dijkstra’s algorithm: finding and updating nodes

Exercise: fill out this table

<table>
<thead>
<tr>
<th>Data structure</th>
<th>Remove min ((t_s))</th>
<th>Update cost ((t_u))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hash map</td>
<td>(O(</td>
<td>V</td>
</tr>
<tr>
<td>Sorted array</td>
<td>(O(1))</td>
<td>(O(</td>
</tr>
<tr>
<td>AVL tree</td>
<td>(O(\log(</td>
<td>V</td>
</tr>
<tr>
<td>Binary heap</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Exercise: fill out this table

<table>
<thead>
<tr>
<th>Data structure</th>
<th>Remove min (t_s)</th>
<th>Update cost (t_u)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hash map</td>
<td>$O(</td>
<td>V</td>
</tr>
<tr>
<td>Sorted array</td>
<td>$O(1)$</td>
<td>$O(</td>
</tr>
<tr>
<td>AVL tree</td>
<td>$O(\log(</td>
<td>V</td>
</tr>
<tr>
<td>Binary heap</td>
<td>$O(\log(</td>
<td>V</td>
</tr>
</tbody>
</table>
Dijkstra's algorithm: finding and updating nodes

Exercise: fill out this table

<table>
<thead>
<tr>
<th>Data structure</th>
<th>Remove min ((t_s))</th>
<th>Update cost ((t_u))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hash map</td>
<td>(O(</td>
<td>V</td>
</tr>
<tr>
<td>Sorted array</td>
<td>(O(1))</td>
<td>(O(</td>
</tr>
<tr>
<td>AVL tree</td>
<td>(O(\log(</td>
<td>V</td>
</tr>
<tr>
<td>Binary heap</td>
<td>(O(\log(</td>
<td>V</td>
</tr>
</tbody>
</table>

The AVL version looks actually pretty reasonable.
Another common approach: modify binary heaps so they can update the cost in $O(\log(n))$ time (a “hybrid” binary heap):
Dijkstra’s algorithm: finding and updating nodes

Another common approach: modify binary heaps so they can update the cost in $O(\log(n))$ time (a “hybrid” binary heap):

- Two fields: the same heap internal array, and a hash table mapping vertices to their index in the array.
Another common approach: modify binary heaps so they can update the cost in $O(\log(n))$ time (a “hybrid” binary heap):

- Two fields: the same heap internal array, and a hash table mapping vertices to their index in the array.
- Assumptions: each vertex is unique; we only decrease the cost
Dijkstra’s algorithm: finding and updating nodes

Another common approach: modify binary heaps so they can update the cost in $O(\log(n))$ time (a “hybrid” binary heap):

- Two fields: the same heap internal array, and a hash table mapping vertices to their index in the array.
- Assumptions: each vertex is unique; we only decrease the cost
- Implementing `removeMin`:

- Implementing `updateCost`:
Dijkstra’s algorithm: finding and updating nodes

Another common approach: modify binary heaps so they can update the cost in $O(\log(n))$ time (a “hybrid” binary heap):

- Two fields: the same heap internal array, and a hash table mapping vertices to their index in the array.
- Assumptions: each vertex is unique; we only decrease the cost
- Implementing **removeMin**:
 Run the standard removeMin heap algorithm. As we swap nodes, add some extra code to keep the hash map up-to-date. This is still $O(\log(n))$.
- Implementing **updateCost**:
Another common approach: modify binary heaps so they can update the cost in $O(\log(n))$ time (a “hybrid” binary heap):

- Two fields: the same heap internal array, and a hash table mapping vertices to their index in the array.
- Assumptions: each vertex is unique; we only decrease the cost
- Implementing **removeMin**:
 Run the standard removeMin heap algorithm. As we swap nodes, add some extra code to keep the hash map up-to-date. This is still $O(\log(n))$.
- Implementing **updateCost**:
 Use the hash map to get the index of the given node. Run percolateUp, updating the hash map as we go. This is still $O(\log(n))$.
Dijkstra’s algorithm: finding and updating nodes

<table>
<thead>
<tr>
<th>Data structure</th>
<th>removeMin (t_s)</th>
<th>updateCost (t_u)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hash map</td>
<td>$\mathcal{O}(</td>
<td>V</td>
</tr>
<tr>
<td>Sorted array</td>
<td>$\mathcal{O}(1)$</td>
<td>$\mathcal{O}(</td>
</tr>
<tr>
<td>AVL tree</td>
<td>$\mathcal{O}(</td>
<td>\log(</td>
</tr>
<tr>
<td>Binary heap</td>
<td>$\mathcal{O}(</td>
<td>\log(</td>
</tr>
<tr>
<td>“Hybrid” binary heap</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Fibonacci heaps are beyond the scope of this class.
Dijkstra’s algorithm: finding and updating nodes

<table>
<thead>
<tr>
<th>Data structure</th>
<th>removeMin (t_s)</th>
<th>updateCost (t_u)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hash map</td>
<td>$O(</td>
<td>V</td>
</tr>
<tr>
<td>Sorted array</td>
<td>$O(1)$</td>
<td>$O(</td>
</tr>
<tr>
<td>AVL tree</td>
<td>$O(\log(</td>
<td>V</td>
</tr>
<tr>
<td>Binary heap</td>
<td>$O(\log(</td>
<td>V</td>
</tr>
<tr>
<td>“Hybrid” binary heap</td>
<td>$O(\log(</td>
<td>V</td>
</tr>
</tbody>
</table>

Note: Fibonacci heaps are beyond the scope of this class.
Dijkstra’s algorithm: finding and updating nodes

<table>
<thead>
<tr>
<th>Data structure</th>
<th>removeMin ((t_s))</th>
<th>updateCost ((t_u))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hash map</td>
<td>(O(</td>
<td>V</td>
</tr>
<tr>
<td>Sorted array</td>
<td>(O(1))</td>
<td>(O(</td>
</tr>
<tr>
<td>AVL tree</td>
<td>(O(\log(</td>
<td>V</td>
</tr>
<tr>
<td>Binary heap</td>
<td>(O(\log(</td>
<td>V</td>
</tr>
<tr>
<td>“Hybrid” binary heap</td>
<td>(O(\log(</td>
<td>V</td>
</tr>
<tr>
<td>Fibonacci heaps</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Fibonacci heaps are beyond the scope of this class.
Dijkstra’s algorithm: finding and updating nodes

<table>
<thead>
<tr>
<th>Data structure</th>
<th>(t_s)</th>
<th>(t_u)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hash map</td>
<td>(O(</td>
<td>V</td>
</tr>
<tr>
<td>Sorted array</td>
<td>(O(1))</td>
<td>(O(</td>
</tr>
<tr>
<td>AVL tree</td>
<td>(O(\log(</td>
<td>V</td>
</tr>
<tr>
<td>Binary heap</td>
<td>(O(\log(</td>
<td>V</td>
</tr>
<tr>
<td>“Hybrid” binary heap</td>
<td>(O(\log(</td>
<td>V</td>
</tr>
<tr>
<td>Fibonacci heaps</td>
<td>(O(\log(</td>
<td>V</td>
</tr>
</tbody>
</table>

Note: Fibonacci heaps are beyond the scope of this class.
Observation: Gosh, this all sounds exhausting

What if we replace the binary heap’s call to `updateCost` with `insert` and just allow duplicates?
Observation: Gosh, this all sounds exhausting

What if we replace the binary heap’s call to updateCost with insert and just allow duplicates?

Runtime is now $O((|V| + |E|) \log(|V| + |E|))$ – the analysis is left as an exercise to the reader.

So, less efficient, but easiest to implement.