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Goal: How do we traverse graphs?

Today’s goal: how do we traverse graphs?

Idea 1: Just get a list of the vertices and loop over them

Problem: What if we want to traverse graphs following the edges?

For example, can we...

I Traverse a graph to find if there’s a connection from one node
to another?

I Determine if we can start from our node and touch every
other node?

I Find the shortest path between two nodes?

Solution: Use graph traversal algorithms like breadth-first search
and depth-first search
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Breadth-first search (BFS) example

search(v):

visited = empty set

queue.enqueue(v)

visited.add(v)

while (queue is not empty):

curr = queue.dequeue()

for (w : v.neighbors()):

if (w not in visited):

queue.enqueue(w)

visited.add(curr)

a

b

d

c

e

f

g

h
i j

Current node:

Queue: a,

Visited: a,
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Breadth-first search (BFS)

Breadth-first traversal, core idea:

1. Use something (e.g. a queue) to keep track of every vertex to
visit

2. Add and remove nodes from queue until it’s empty
3. Use a set to store nodes we don’t want to recheck/revisit
4. Runtime:

I We visit each node once.
I For each node, check each edge to see if we should add to

queue
I So we check each edge at most twice

So, O (|V |+ 2|E |), which simplifies to O (|V |+ |E |).
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Breadth-first search (BFS)

Pseudocode:

search(v):

visited = empty set

queue.enqueue(v)

visited.add(v)

while (queue is not empty):

curr = queue.dequeue()

for (w : v.neighbors()):

if (w not in visited):

queue.enqueue(w)

visited.add(curr)
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An interesting property...

Note: We visited the nodes in “rings” – maintained a gradually
growing “frontier” of nodes.

a

b

d

c

e

f

g

h
i j
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An interesting property...

What does this look like for trees?

The algorithm traverses the width, or “breadth” of the tree
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Depth-first search (DFS)

Question: Why a queue? Can we use other data structures?

Answer: Yes! Any kind of list-like thing that supports appends
and removes works! For example, what if we try using a stack?

The BFS algorithm:
search(v):

visited = empty set

queue.enqueue(v)

visited.add(v)

while (queue is not empty):

curr = queue.dequeue()

for (w : v.neighbors()):

if (w not in visited):

queue.enqueue(w)

visited.add(curr)

The DFS algorithm:
search(v):

visited = empty set

stack.push(v)

visited.add(v)

while (stack is not empty):

curr = stack.pop()

visited.add(curr)

for (w : v.neighbors()):

if (w not in visited):

stack.push(w)

visited.add(v)
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Depth-first search (DFS) example

search(v):
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stack.push(v)

while (stack is not empty):

curr = stack.pop()

visited.add(curr)

for (w : v.neighbors()):

if (w not in visited):

stack.push(w)

a

b

d

e

f

g

h
i

c

j

Current node:

Stack: a,

Visited: a,
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Depth-first search (DFS)

Depth-first traversal, core idea:

1. Instead of using a queue, use a stack. Otherwise, keep
everything the same.

2. Runtime: also O (|V |+ |E |) for same reasons as BFS

Pseudocode:
search(v):

visited = empty set

stack.push(v)

visited.add(v)

while (stack is not empty):

curr = stack.pop()

for (w : v.neighbors()):

if (w not in visited):

stack.push(w)

visited.add(curr)
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1. Instead of using a queue, use a stack. Otherwise, keep
everything the same.

2. Runtime: also O (|V |+ |E |) for same reasons as BFS

Pseudocode:
search(v):

visited = empty set
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while (stack is not empty):

curr = stack.pop()
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An interesting property...

Note: Rather the growing the node in “rings”, we randomly
wandered through the graph until we got stuck, then
“backtracked”.
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An interesting property...

What does this look like for trees?

The algorithm traverses to the bottom first: it prioritizes the
“depth” of the tree

Note: rest of algorithm omitted
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Compare and contrast

Question: When do we use BFS vs DFS?

Related question: How much memory does BFS and DFS use in
the worst case?

I BFS:

O (|V |) – what if every node is connected to the start?

I DFS:

O (|V |) – what if the nodes are arranged like a linked
list?

So, in the worst case, BFS and DFS both have the same
worst-case runtime and memory usage.

They only differ in what order they visit the nodes.
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Compare and contrast

How much memory does BFS and DFS use in the average case?

Related question: how much memory do they use when we want to
traverse a tree?

I BFS:

O (“width” of tree) = O (num leaves)

I DFS:

O (height)

For graphs:

I Use BFS if graph is “narrow”, or if solution is “near” start
I Use DFS if graph is “wide”

In practice, graphs are often large/very wide, so DFS is often a
good default choice. (It’s also possible to implement DFS
recursively!)
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Design challenge

Question: How would you modify BFS to find the shortest path
between every node?

S E

a

w

b

x y

z

Observation: Since BFS moves out in rings, we will reach the end
node via the path of length 3 first.

Idea: when we enqueue, store where we came from in some way.
(e.g. mark node, use a dictionary...)

After BFS is done, backtrack.
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Design challenge: pathfinding

Question: How would you modify BFS to find the shortest path
between every node?

S E

a

w

b

x y

z

Now, start from any node, follow arrows, then reverse to get path.
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Design challenge: pathfinding

Question: What if the edges have weights?
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2
2

2

2
S E

a b

w

x y

z

Weighted graph
A weighted graph is a kind of graph where each edge has a
numerical “weight” associated with it.

This number can represent anything, but is often (but not
always!) used to indicate the “cost” of traveling down that edge.
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Pathfinding and DFS

We can use BFS to correctly find the shortest path between two
nodes in an unweighted graph...

...but it fails if the graph is weighted!

We need a better algorithm.

Today: Dijkstra’s algorithm
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Dijkstra’s algorithm

Core idea:

1. Assign each node an initial cost of ∞

2. Set our starting node’s cost to 0
3. Update all adjacent vertices costs to the minimum known cost
4. Mark the current node as being “done”
5. Pick the next unvisited node with the minimum cost. Go to

step 3.

Metaphor: Treat edges as canals and edge weights as distance.
Imagine opening a dam at the starting node. How long does it
take for the water to reach each vertex?

Caveat: Dijkstra’s algorithm only guaranteed to work for graphs
with no negative edge weights.

Pronunciation: DYKE-struh (“dijk” rhymes with “bike”)
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Dijkstra’s algorithm

Suppose we start at vertex “a”:
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Dijkstra’s algorithm

Some implementation details...

I How do we keep track of the node costs?

I Could use a dictionary
I Could manually mark each node

I How do we find the node with the smallest cost?
I Could maintain a sorted list
I Could use a heap!

I If we’re using a heap, how do we update node costs?
I Could add a changeKeyPriority(...) method to heap
I Alternatively, add the node and the cost to the heap again

(and ignore duplicates)
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