CSE 373: More sorts, tree method, the master method

Michael Lee

Wednesday, Feb 7, 2018

Friday, Feb 9
Divide-and-conquer is a useful technique for solving many kinds of problems. It consists of the following steps:
Divide-and-conquer is a useful technique for solving many kinds of problems. It consists of the following steps:

1. *Divide* your work up into smaller pieces (recursively)
Divide-and-conquer is a useful technique for solving many kinds of problems. It consists of the following steps:

1. *Divide* your work up into smaller pieces (recursively)
2. *Conquer* the individual pieces (as base cases)
Technique: Divide-and-Conquer

Divide-and-conquer is a useful technique for solving many kinds of problems. It consists of the following steps:

1. *Divide* your work up into smaller pieces (recursively)
2. *Conquer* the individual pieces (as base cases)
3. *Combine* the results together (recursively)
Technique: Divide-and-Conquer

Divide-and-conquer is a useful technique for solving many kinds of problems. It consists of the following steps:

1. *Divide* your work up into smaller pieces (recursively)
2. *Conquer* the individual pieces (as base cases)
3. *Combine* the results together (recursively)

Example template

```plaintext
algorithm(input) {
   if (small enough) {
      CONQUER, solve, and return input
   } else {
      DIVIDE input into multiple pieces
      RECURSE on each piece
      COMBINE and return results
   }
}
```
Merge sort: Core pieces

Divide:

Unsorted

Conquer:

Return array when length ≤ 1

Combine:

Combine two sorted arrays using merge

Sorted

Sorted

Sorted
Divide: Split array roughly into half

- **Unsorted**
- **Unsorted**

Conquer: Return array when length ≤ 1

Combine: Combine two sorted arrays using merge

- **Sorted**
- **Sorted**
Merge sort: Core pieces

Divide: Split array roughly into half

- Unsorted
- Unsorted
- Unsorted

Conquer:
Merge sort: Core pieces

Divide: Split array roughly into half

- Unsorted

Conquer: Return array when length \(\leq 1 \)

- Sorted
Merge sort: Core pieces

Divide: Split array roughly into half

- Unsorted
- Unsorted

Conquer: Return array when length ≤ 1

Combine:

- Sorted
- Sorted
Merge sort: Core pieces

Divide: Split array roughly into half

```
Unsorted
```

Conquer: Return array when length \(\leq 1 \)

```
Sorted
```

Combine: Combine two sorted arrays using merge

```
Sorted
```

Core idea: split array in half, sort each half, merge back together. If the array has size 0 or 1, just return it unchanged.

Pseudocode

```plaintext
sort(input) {
    if (input.length < 2) {
        return input;
    } else {
        smallerHalf = sort(input[0, ..., mid]);
        largerHalf = sort(input[mid + 1, ...]);
        return merge(smallerHalf, largerHalf);
    }
}
```
Merge sort: Example

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>10</td>
<td>7</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>2</td>
<td>11</td>
</tr>
</tbody>
</table>
Merge sort: Example

5 10 7 2 3 6 2 11

5 10 7 2

3 6 2 11
Merge sort: Example
Merge sort: Example
Merge sort: Example

5 10 7 2 3 6 2 11
Merge sort: Example

```plaintext
5  10  2  7  3  6  2  11
```
Merge sort: Example
Merge sort: Example

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>10</td>
<td>11</td>
</tr>
</tbody>
</table>

```
2 5 7 10
```

```
5 10
a[0] a[1]
```

```
2 7
```

```
3 6
```

```
2 11
```
Merge sort: Analysis

Pseudocode

```java
sort(input) {
    if (input.length < 2) {
        return input;
    } else {
        smallerHalf = sort(input[0, ..., mid]);
        largerHalf = sort(input[mid + 1, ...]);
        return merge(smallerHalf, largerHalf);
    }
}
```

Best case runtime?

\[T_B(n) = \begin{cases} 1 & \text{if } n < 2 \\ n + 2T_B\left(\frac{n}{2}\right) & \text{otherwise} \end{cases} \]

Worst case runtime?

\[T_W(n) = \begin{cases} 1 & \text{if } n < 2 \\ n + 2T_W\left(\frac{n}{2}\right) & \text{otherwise} \end{cases} \]
Best and worst case

We always subdivide the array in half on each recursive call, and merge takes $O(n)$ time to run. So, the best and worst case runtime is the same:

$$T(n) = \begin{cases}
1 & \text{if } n \leq 1 \\
2T(n/2) + n & \text{otherwise}
\end{cases}$$
Best and worst case

We always subdivide the array in half on each recursive call, and merge takes $O(n)$ time to run. So, the best and worst case runtime is the same:

$$T(n) = \begin{cases}
1 & \text{if } n \leq 1 \\
2T(n/2) + n & \text{otherwise}
\end{cases}$$

Spoiler alert: this is $\Theta(n \log(n))$
Quick sort: Divide step

\[
\begin{array}{cccccccc}
6 & 10 & 7 & 2 & 3 & 5 & 2 & 11 \\
\end{array}
\]
Quick sort: Divide step

Pivot

6

6 10 7 2 3 5 2 11

Quick sort: Divide step

Numbers ≤ pivot
Quick sort: Divide step

Numbers \leq pivot

Numbers $> pivot
Quick sort: Core pieces

Divide: Pick a pivot, partition into groups

- P
- Unsorted
- $\leq P$
- $> P$
Quick sort: Core pieces

Divide: Pick a pivot, partition into groups

Conquer:
Quick sort: Core pieces

Divide: Pick a pivot, partition into groups

- P
- Unsorted
- $\leq P$
- $> P$

Conquer: Return array when length ≤ 1
Quick sort: Core pieces

Divide: Pick a pivot, partition into groups

\[
P \quad \text{Unsorted} \quad \begin{array}{c}
\leq P \\
> P
\end{array}
\]

Conquer: Return array when length \(\leq 1 \)

\[
\begin{array}{c}
\leq P \\
P \\
> P
\end{array}
\]

Combine:
Quick sort: Core pieces

Divide: Pick a pivot, partition into groups

- \(\leq P \)
- \(> P \)

Conquer: Return array when length \(\leq 1 \)

Combine: Combine sorted portions and the pivot

\(\mathcal{O}(n) \)
Core idea: Pick some item from the array and call it the **pivot**. Put all items **smaller** in the pivot into one group and all items **larger** in the other and recursively sort. If the array has size 0 or 1, just return it unchanged.

Pseudocode

```pseudo
sort(input) {
    if (input.length < 2) {
        return input;
    } else {
        pivot = getPivot(input);
        smallerHalf = sort(getSmaller(pivot, input));
        largerHalf = sort(getBigger(pivot, input));
        return smallerHalf + pivot + largerHalf;
    }
}
```
Quick sort: Example

<table>
<thead>
<tr>
<th></th>
<th>20</th>
<th>50</th>
<th>70</th>
<th>10</th>
<th>60</th>
<th>40</th>
<th>30</th>
</tr>
</thead>
</table>
Quick sort: Example

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>50</td>
<td>70</td>
<td>10</td>
<td>60</td>
<td>40</td>
<td>30</td>
</tr>
</tbody>
</table>
Quick sort: Example

20 50 70 10 60 40 30

10

50 70 60 40 30

Quick sort: Example

```plaintext
20  50  70  10  60  40  30
```

10 50 70 60 40 30

10
a[0]
Quick sort: Example

20 50 70 10 60 40 30

10

50 70 60 40 30

40 30

a[0] a[1]

70 60

a[0] a[1]
Quick sort: Example

20 50 70 10 60 40 30

10
 a[0]

50 70 60 40 30

40 30
 a[0] a[1]

70 60
 a[0] a[1]
Quick sort: Example
Quick sort: Example
Quick sort: Example

20

10

30 40 50 60 70

30 40

60 70

30

60

30

40

60

70

a[0] a[1] a[0] a[1] a[0]
Quick sort: Example

10 20 30 40 50 60 70

10
a[0]

30 40 50 60 70

30 40
a[0] a[1]

60 70
60
a[0]

30
a[0]

60
a[0]

30
a[0]
Quick sort: Analysis

Pseudocode

```java
sort(input) {
    if (input.length < 2) {
        return input;
    } else {
        pivot = getPivot(input);
        smallerHalf = sort(getSmaller(pivot, input));
        largerHalf = sort(getBigger(pivot, input));
        return smallerHalf + pivot + largerHalf;
    }
}
```

Best case runtime?

$$T_B(n) = \begin{cases}
1 & \text{if } n \leq 1 \\
\ v + 2T\left(\frac{n}{2} \right) & \text{otherwise}
\end{cases}$$

Worst case runtime?

$$T_w(n) = \begin{cases}
1 & \text{if } n \leq 1 \\
\ v + T(n-1) & \text{otherwise}
\end{cases}$$
Best case analysis

In the best case, we always pick the median element.

\[T(n) = \begin{cases}
2T(n/2) + n & \text{if } n > 1 \\
1 & \text{otherwise}
\end{cases} \]
Quick sort: Analysis

Best case analysis

In the **best** case, we always pick the **median** element.

\[
T(n) = \begin{cases}
2T(n/2) + n & \text{if } n > 1 \\
1 & \text{otherwise}
\end{cases}
\]

(Spoiler alert: this is \(\Theta(n \log(n)) \))
Worst case analysis

In the **worst** case, we always end up picking the **minimum** or **maximum** element.

\[
T(n) = \begin{cases}
T(n - 1) + n & \text{if } n > 1 \\
1 & \text{otherwise}
\end{cases}
\]

So, the worst-case runtime is \(\Theta \left(n^2 \right) \).
Best case analysis

In the **best** case, we always pick the **median** element, so the best-case runtime is $\Theta(n \log(n))$.

Worst case analysis

In the **worst** case, we always end up picking the **minimum** or **maximum** element, so, the worst-case runtime is $\Theta(n^2)$.

Average case runtime

Usually, we’ll pick a **random** element, which makes the runtime $\Theta(n \log(n))$.
Quick sort: Unresolved questions

How do we pick a pivot?

How do we partition?
Quick sort: Unresolved questions

How do we pick a pivot?

How do we partition?
How do we pick a pivot?

- Worst case? Pick the minimum or the maximum. The work will shrink by only 1 on each recursive call.

How do we partition?
Quick sort: Unresolved questions

How do we pick a pivot?

- Worst case? Pick the **minimum** or the **maximum**. The work will shrink by only 1 on each recursive call.
- Ideally? Pick the **median**. The work will split in half on each recursive call.

How do we partition?
Quick sort: Picking a pivot

How do we find the median?
How do we find the median?

- Idea: pick the first item in the array
 - Problem: what if the array is already sorted?
 - (Real world data often is partially sorted)
 - But hey, it’s speedy ($\mathcal{O}(1)$)
Quick sort: Picking a pivot

How do we find the median?

- Idea: pick the first item in the array
 - Problem: what if the array is already sorted?
 - (Real world data often is partially sorted)
 - But hey, it’s speedy ($O(1)$)
- Idea: try finding it by looping through the array
Quick sort: Picking a pivot

How do we find the median?

- Idea: pick the first item in the array
 - Problem: what if the array is already sorted?
 - (Real world data often is partially sorted)
 - But hey, it’s speedy ($O(1)$)
- Idea: try finding it by looping through the array
 - Problem: hard to implement, and expensive ($O(n)$)
Quick sort: Picking a pivot

How do we find the median?

▸ Idea: pick the first item in the array
 ▸ Problem: what if the array is already sorted?
 ▸ (Real world data often is partially sorted)
 ▸ But hey, it’s speedy ($\mathcal{O}(1)$)

▸ Idea: try finding it by looping through the array
 ▸ Problem: hard to implement, and expensive ($\mathcal{O}(n)$)

These seem like bad ideas :(
Quick sort: Picking a pivot

Other ideas:
Quick sort: Picking a pivot

Other ideas:

- Idea: pick a random element

...but works well in practice, and is efficient

These seem like good ideas :)

22
Quick sort: Picking a pivot

Other ideas:

- Idea: pick a random element
 - On average, guaranteed to do well – no easy worst case
 - Random number generation can sometimes be expensive/fraught with peril

These seem like good ideas :)
Quick sort: Picking a pivot

Other ideas:

▶ Idea: pick a random element
 ▶ On average, guaranteed to do well – no easy worst case
 ▶ Random number generation can sometimes be expensive/fraught with peril

▶ Idea: pick the median of first, middle, and last
Quick sort: Picking a pivot

Other ideas:

- Idea: pick a random element
 - On average, guaranteed to do well – no easy worst case
 - Random number generation can sometimes be expensive/fraught with peril

- Idea: pick the median of first, middle, and last
 - Adversary could still construct malicious input
 - ...but works well in practice, and is efficient
Quick sort: Picking a pivot

Other ideas:

- Idea: pick a random element
 - On average, guaranteed to do well – no easy worst case
 - Random number generation can sometimes be expensive/fraught with peril

- Idea: pick the median of first, middle, and last
 - Adversary could still construct malicious input
 - ...but works well in practice, and is efficient

These seem like good ideas :)}
Quick sort: Unresolved questions

How do we pick a pivot?

How do we partition?
Quick sort: Partitioning (using median-of-three pivot)

Find the lo, med, and hi

8 1 4 9 0 3 5 2 7 6
Quick sort: Partitioning (using median-of-three pivot)

Find the lo, med, and hi

Find the median of the three and **swap** with front
Quick sort: Partitioning (using median-of-three pivot)

Find the lo, med, and hi

Find the median of the three and swap with front

Final result: pivot is now at index 0
Quick sort: Partitioning (using median-of-three pivot)

Array after moving pivot:

Partitioning:

low: $1 \leq 6$

high: $8 > 6$
Quick sort: Partitioning (using median-of-three pivot)

Array after moving pivot:

```
6 1 4 9 0 3 5 2 7 8
```

Partitioning:

```
6 1 4 9 0 3 5 2 7 8
```

low: 4 \leq 6

high: 7 > 6
Quick sort: Partitioning (using median-of-three pivot)

Array after moving pivot:

Partitioning:

low: $9 \leq 6$

high: $2 > 6$
Quick sort: Partitioning (using median-of-three pivot)

Array after moving pivot:

```
6  1  4  9  0  3  5  2  7  8
```

Partitioning:

```
6  1  4  9  0  3  5  2  7  8
```

low: $9 \leq 6$

high: $2 > 6$

SWAP
Quick sort: Partitioning (using median-of-three pivot)

Array after moving pivot:

6 1 4 9 0 3 5 2 7 8

Partitioning:

6 1 4 2 0 3 5 9 7 8

low
2 \leq 6

high
9 > 6
Quick sort: Partitioning (using median-of-three pivot)

Array after moving pivot:

 Partitioning:
Quick sort: Partitioning (using median-of-three pivot)

Array after moving pivot:

<table>
<thead>
<tr>
<th>6</th>
<th>1</th>
<th>4</th>
<th>9</th>
<th>0</th>
<th>3</th>
<th>5</th>
<th>2</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
</table>
Quick sort: Partitioning (using median-of-three pivot)

Array after moving pivot:

Partitioning:

low \ 5 \leq 6 \quad \text{high} \quad 5 > 6
Quick sort: Partitioning (using median-of-three pivot)

Array after moving pivot:

```
<table>
<thead>
<tr>
<th>6</th>
<th>1</th>
<th>4</th>
<th>9</th>
<th>0</th>
<th>3</th>
<th>5</th>
<th>2</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
</table>

Partitioning:

- **high**: 5 > 6
- **low**: 9 ≤ 6
Quick sort: Partitioning (using median-of-three pivot)

Array after moving pivot:

```
<table>
<thead>
<tr>
<th>6</th>
<th>1</th>
<th>4</th>
<th>9</th>
<th>0</th>
<th>3</th>
<th>5</th>
<th>2</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
</table>
```

Partitioning:

```
6 1 4 2 0 3 5 9 7 8
```

SWAP

high: 5 > 6
low: 9 ≤ 6
Quick sort: Partitioning (using median-of-three pivot)

Array after moving pivot:

\[
\begin{align*}
6 & \quad 1 & \quad 4 & \quad 9 & \quad 0 & \quad 3 & \quad 5 & \quad 2 & \quad 7 & \quad 8 \\
\end{align*}
\]

Partitioning:

\[
\begin{align*}
5 & \quad 1 & \quad 4 & \quad 2 & \quad 0 & \quad 3 & \quad 6 & \quad 9 & \quad 7 & \quad 8 \\
\end{align*}
\]

Unsorted $\leq 6$  \quad Unsorted $> 6$
Quick sort: Core pieces revisited

**Divide:** Pick a pivot, partition in-place into groups

Unsorted

\[ \leq P \quad P \quad > P \]
Quick sort: Core pieces revisited

**Divide:** Pick a pivot, partition in-place into groups

**Conquer:** When subarray is length $\leq 1$, do nothing
Quick sort: Core pieces revisited

**Divide:** Pick a pivot, partition in-place into groups

![Partition Diagram]

**Conquer:** When subarray is length $\leq 1$, do nothing

**Combine:** Do nothing; already done!
So, merge sort and quick sort are both:

\[ T(n) = \begin{cases} 
1 & \text{if } n \leq 1 \\
2T(n/2) + n & \text{otherwise}
\end{cases} \]
So, merge sort and quick sort are both:

\[ T(n) = \begin{cases} 
1 & \text{if } n \leq 1 \\
2T(n/2) + n & \text{otherwise}
\end{cases} \]

I claim \( T(n) \in \Theta(n \log(n)) \). How can we show this?
Analyzing recurrences, part 2

We could try unfolding, but it’s annoying:

\[ T(n) = n + 2T(n^2) = n + 2(n^2 + 2T(n^4)) = n + 2n^2 + 4T(n^4) = n + 2n^2 + 4n^4 + 8T(n^8) = \ldots = n + n + \cdots + n + \log(n) \times + n \log(n) = n \log(n) \]
We could try unfolding, but it’s annoying:

\[ T(n) = n + 2T \left( \frac{n}{2} \right) \]
We could try unfolding, but it’s annoying:

\[
T(n) = n + 2T\left(\frac{n}{2}\right)
\]

\[
= n + 2\left(\frac{n}{2} + 2T\left(\frac{n}{4}\right)\right)
\]
We could try unfolding, but it’s annoying:

\[ T(n) = n + 2T\left(\frac{n}{2}\right) \]

\[ = n + 2\left(\frac{n}{2} + 2T\left(\frac{n}{4}\right)\right) \]

\[ = n + 2\left(\frac{n}{2} + 2T\left(\frac{n}{4}\right)\right) \]
We could try unfolding, but it’s annoying:

\[ T(n) = n + 2T\left(\frac{n}{2}\right) \]

\[ = n + 2\left(\frac{n}{2} + 2T\left(\frac{n}{4}\right)\right) \]

\[ = n + 2\left(\frac{n}{2} + 2T\left(\frac{n}{4}\right)\right) \]

\[ = n + 2\left(\frac{n}{2} + 2T\left(\frac{n}{4} + 2T\left(\frac{n}{8}\right)\right)\right) \]
We could try unfolding, but it’s annoying:

\[
T(n) = n + 2T\left(\frac{n}{2}\right) \\
= n + 2\left(\frac{n}{2} + 2T\left(\frac{n}{4}\right)\right) \\
= n + 2\left(\frac{n}{2} + 2T \left(\frac{n}{4}\right)\right) \\
= n + 2\left(\frac{n}{2} + 2T \left(\frac{n}{4} + 2T\left(\frac{n}{8}\right)\right)\right) \\
= n + n + 4T \left(\frac{n}{4} + 2T \left(\frac{n}{8}\right)\right)
\]
We could try unfolding, but it’s annoying:

\[
T(n) = n + 2T\left(\frac{n}{2}\right)
\]
\[
= n + 2\left(\frac{n}{2} + 2T\left(\frac{n}{4}\right)\right)
\]
\[
= n + 2\left(\frac{n}{2} + 2T\left(\frac{n}{4}\right)\right)
\]
\[
= n + 2\left(\frac{n}{2} + 2T\left(\frac{n}{4}\right)\right)
\]
\[
= n + 2\left(\frac{n}{2} + 2T\left(\frac{n}{4} + 2T\left(\frac{n}{8}\right)\right)\right)
\]
\[
= n + n + 4T\left(\frac{n}{4} + 2T\left(\frac{n}{8}\right)\right)
\]
\[
= n + n + n + 8T\left(\frac{n}{8}\right)
\]
We could try unfolding, but it’s annoying:

\[ T(n) = n + 2T \left( \frac{n}{2} \right) \]

\[ = n + 2 \left( \frac{n}{2} + 2T \left( \frac{n}{4} \right) \right) \]

\[ = n + 2 \left( \frac{n}{2} + 2 \left( \frac{n}{4} + 2T \left( \frac{n}{8} \right) \right) \right) \]

\[ = n + n + 4T \left( \frac{n}{4} + 2T \left( \frac{n}{8} \right) \right) \]

\[ = n + n + n + 8T \left( \frac{n}{8} \right) \]

\[ = n + n + \cdots + n + n \]

about \( \log(n) \) times
We could try unfolding, but it’s annoying:

\[ T(n) = n + 2T\left(\frac{n}{2}\right) \]
\[ = n + 2\left(\frac{n}{2} + 2T\left(\frac{n}{4}\right)\right) \]
\[ = n + 2\left(\frac{n}{2} + 2\left(\frac{n}{2} + 2T\left(\frac{n}{4}\right)\right)\right) \]
\[ = n + 2\left(\frac{n}{2} + 2\left(\frac{n}{2} + 2T\left(\frac{n}{4}\right)\right)\right) \]
\[ = n + 2\left(\frac{n}{2} + 2\left(\frac{n}{2} + 2\left(\frac{n}{4} + 2T\left(\frac{n}{8}\right)\right)\right)\right) \]
\[ = n + n + 4T\left(\frac{n}{4} + 2T\left(\frac{n}{8}\right)\right) \]
\[ = n + n + n + 8T\left(\frac{n}{8}\right) \]
\[ = n + n + \cdots + n + n \]
\[ \text{about } \log(n) \text{ times} \]
\[ = n \log(n) \]
Core idea:

1. Draw what the work looks like visually, as a tree
The tree method: overview

Core idea:

1. Draw what the work looks like visually, as a *tree*
2. Use the visualization to help us analyze the overall behavior
Core idea:

1. Draw what the work looks like visually, as a tree
2. Use the visualization to help us analyze the overall behavior
3. Either find the closed form, or construct a summation that we can simplify to get the closed form
The tree method: example

Step 1: Start with the function, let $n$ be the input value

$T(n)$
The tree method: example

Step 2: Replace with definition

\[ T\left(\frac{n}{2}\right) + T\left(\frac{n}{2}\right) + n \]
The tree method: example

Step 3: Stick each recursive call into a *subtree*

\[ T(n) = \]

\[
\begin{array}{c}
\text{n} \\
T\left(\frac{n}{2}\right) + T\left(\frac{n}{2}\right)
\end{array}
\]
Step 4: Replace with definition

\[ T\left(\frac{n}{4}\right) + T\left(\frac{n}{4}\right) + \frac{n}{2} \]

Final step: how much work does each base case do?
The tree method: example

Repeat step 3 (move recursive call to subtrees):

\[ T\left(\frac{n}{4}\right) \quad T\left(\frac{n}{4}\right) \quad T\left(\frac{n}{4}\right) \quad T\left(\frac{n}{4}\right) \]
Repeat step 4 (replace recursive call with definition):

\[ n \]

\[ \frac{n}{2} \quad \frac{n}{2} \]

\[ 2T\left(\frac{n}{8}\right) + \frac{n}{4} \quad 2T\left(\frac{n}{8}\right) + \frac{n}{4} \quad 2T\left(\frac{n}{8}\right) + \frac{n}{4} \quad 2T\left(\frac{n}{8}\right) + \frac{n}{4} \]
The tree method: example

Repeat...

```
 n
 /\ /
/ \ / \ /
/\ /\ /\ /
/ \ / \ / \ /
\ \ \ \ \
 n/4 n/4 n/4 n/4
```

Final step: how much work does each base case do?
The tree method: example

Final step: how much work does each base case do?

```
 n
 / \
 n/2 n/2
 / \
 n/4 n/4
 / \
 . .
 / \
 . .
 / \
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
```
Now, let’s add everything up!
The tree method: analysis

Now, let’s add everything up!

How much work is done per level?

\[ n \log_2(n) \]
Now, let’s add everything up!

How much work is done per level?

Height is roughly $\log_2(n)$, so total work is about $n \log_2(n)$. 
The tree method: analysis

Now, let’s add everything up!

How much work is done per level?

\[
\begin{align*}
\text{n work} \\
\text{n work} \\
\text{n work} \\
\text{n work} \\
\end{align*}
\]

Height is roughly \( \log_2(n) \), so total work is about \( n \log_2(n) \).
The tree method: analysis

Now, let’s add everything up!

How much work is done per level?

Height is roughly $\log_2(n)$, so total work is about $n \log_2(n)$. 
Consider the following recurrence:

\[ S(n) = \begin{cases} 
2 & \text{if } n \leq 1 \\
2S\left(\frac{n}{3}\right) + n^2 & \text{otherwise}
\end{cases} \]
Consider the following recurrence:

\[ S(n) = \begin{cases} 
2 & \text{if } n \leq 1 \\
2S \left( \frac{n}{3} \right) + n^2 & \text{otherwise}
\end{cases} \]

Draw a tree to help you visualize the work done.
Step 1: Start with the function, let $n$ be the input value.

$$S(n)$$
Step 2: Replace with definition

\[ S \left( \frac{n}{3} \right) + S \left( \frac{n}{3} \right) + n^2 \]
Step 3: Stick each recursive call into a *subtree*

```
 n^2
 / \
S(\frac{n}{3}) S(\frac{n}{3})
```
Step 4: Replace with definition

\[
S \left( \frac{n}{9} \right) + S \left( \frac{n}{9} \right) + \frac{n^2}{9} + S \left( \frac{n}{9} \right) + S \left( \frac{n}{9} \right) + \frac{n^2}{9}
\]
Repeat step 3 (move recursive call to subtrees):

\[ n^2 \]

\[ \frac{n^2}{9} \]

\[ S\left(\frac{n}{9}\right) \]

\[ S\left(\frac{n}{9}\right) \]

\[ S\left(\frac{n}{9}\right) \]

\[ S\left(\frac{n}{9}\right) \]
Repeat step 4 (replace recursive call with definition):

\[ n^2 \]

\[
\begin{align*}
2S \left( \frac{n}{27} \right) + \frac{n^2}{81} \\
2S \left( \frac{n}{27} \right) + \frac{n^2}{81} \\
2S \left( \frac{n}{27} \right) + \frac{n^2}{81} \\
2S \left( \frac{n}{27} \right) + \frac{n^2}{81}
\end{align*}
\]
The tree method: practice

Repeat...

\[
\begin{align*}
n^2 & \\
\frac{n^2}{9} & \quad \frac{n^2}{9} \\
\frac{n^2}{81} & \quad \frac{n^2}{81} \quad \frac{n^2}{81} \quad \frac{n^2}{81}
\end{align*}
\]

Now what?
The tree method: practice

Final step: how much work does each base case do?

Now what?
Final step: how much work does each base case do?

Now what?
The tree method: precise analysis

**Problem:** Need a rigorous way of getting a closed form
**Problem:** Need a rigorous way of getting a closed form

We want to answer a few core questions:
**Problem:** Need a rigorous way of getting a closed form

We want to answer a few core questions:

**How much work does each recursive level do?**
The tree method: precise analysis

**Problem:** Need a rigorous way of getting a closed form

We want to answer a few core questions:

**How much work does each recursive level do?**

1. How many nodes are there on level $i$? ($i = 0$ is “root” level)
The tree method: precise analysis

**Problem:** Need a rigorous way of getting a closed form

We want to answer a few core questions:

**How much work does each recursive level do?**

1. How many nodes are there on level $i$? ($i = 0$ is “root” level)
2. At some level $i$, how much work does a *single* node do? (Ignoring subtrees)
The tree method: precise analysis

**Problem:** Need a rigorous way of getting a closed form

We want to answer a few core questions:

**How much work does each recursive level do?**

1. How many nodes are there on level $i$? ($i = 0$ is “root” level)
2. At some level $i$, how much work does a *single* node do? (Ignoring subtrees)
3. How many recursive levels are there?

1. How much work does a single leaf node do?
2. How many leaf nodes are there?
The tree method: precise analysis

**Problem:** Need a rigorous way of getting a closed form

We want to answer a few core questions:

**How much work does each recursive level do?**

1. How many nodes are there on level \( i \)? \( i = 0 \) is “root” level
2. At some level \( i \), how much work does a *single* node do? (Ignoring subtrees)
3. How many recursive levels are there?

**How much work does the leaf level (base cases) do?**
The tree method: precise analysis

**Problem:** Need a rigorous way of getting a closed form

We want to answer a few core questions:

**How much work does each recursive level do?**

1. How many nodes are there on level $i$? ($i = 0$ is “root” level)
2. At some level $i$, how much work does a single node do? (Ignoring subtrees)
3. How many recursive levels are there?

**How much work does the leaf level (base cases) do?**

1. How much work does a single leaf node do?
Problem: Need a rigorous way of getting a closed form

We want to answer a few core questions:

How much work does each recursive level do?

1. How many nodes are there on level $i$? ($i = 0$ is “root” level)
2. At some level $i$, how much work does a single node do? (Ignoring subtrees)
3. How many recursive levels are there?

How much work does the leaf level (base cases) do?

1. How much work does a single leaf node do?
2. How many leaf nodes are there?
The tree method: precise analysis

**Problem:** Need a rigorous way of getting a closed form

We want to answer a few core questions:

**How much work does each recursive level do?**

1. How many nodes are there on level $i$? ($i = 0$ is “root” level)
2. At some level $i$, how much work does a *single* node do? (Ignoring subtrees)
3. How many recursive levels are there?

**How much work does the leaf level (base cases) do?**

1. How much work does a single leaf node do?
2. How many leaf nodes are there?
The tree method: precise analysis

\[
\begin{align*}
n & \quad \frac{n}{2} \\
\quad \frac{n}{4} & \quad \frac{n}{4} \\
\quad \ldots & \quad \ldots \\
1 & \quad 1 \\
\end{align*}
\]

1 node, \(n\) work per 2 nodes, \(n^2\) work per 4 nodes, \(n^4\) work per \(2^i\) nodes, \(1\) work per \(2^0\) nodes.

\[\text{numNodes}(n) = 2^i\]
\[\text{workPerNode}(n, i) = n^2^i\]
\[\text{numLevels}(n) = ?\]
\[\text{workPerLeafNode}(n) = 1\]
\[\text{numLeafNodes}(n) = ?\]
The tree method: precise analysis

1. $\text{numNodes}(i) = ?$
2. $\text{workPerNode}(n, i) = ?$
3. $\text{numLevels}(n) = ?$
4. $\text{workPerLeafNode}(n) = ?$
5. $\text{numLeafNodes}(n) = ?$

Let $i$ be the "level number"
The tree method: precise analysis

1. numNodes(i) = ?
2. workPerNode(n, i) = ?
3. numLevels(n) = ?
4. workPerLeafNode(n) = ?
5. numLeafNodes(n) = ?

1 node, n work per
2 nodes, \( \frac{n}{2} \) work per
4 nodes, \( \frac{n}{4} \) work per
\( 2^i \) nodes, \( \frac{n}{i} \) work per
\( 2^h \) nodes, 1 work per
The tree method: precise analysis

1. numNodes(i) = 2^i
2. workPerNode(n, i) = \frac{n}{2^i}
3. numLevels(n) = ?
4. workPerLeafNode(n) = 1
5. numLeafNodes(n) = ?

1 node, n work per
2 nodes, \frac{n}{2} work per
4 nodes, \frac{n}{4} work per
2^i nodes, \frac{n}{i} work per
2^h nodes, 1 work per
How many levels are there, exactly? Is it $\log_2(n)$?

Let's try an example. Suppose we have $T(4)$. What happens?

$T(8)$:

```
 4
 / \ Height is $\log_2(4) = 2$.
 / \ For this recursive function, num recursive levels is same as height.
/ \ Important: total levels, counting base case, is height + 1.
1 1 Important: for other recursive functions, where base case doesn't happen at $n \leq 1$, num recursive levels might be different then $\log_2(n)$.
```

$T(1)$:
How many levels are there, exactly? Is it $\log_2(n)$?

Let's try an example. Suppose we have $T(4)$. What happens?
How many levels are there, exactly? Is it $\log_2(n)$?

Let’s try an example. Suppose we have $T(4)$. What happens?

The height is $\log_2(4) = 2$. For this recursive function, the number of recursive levels is the same as the height.

Important: the total number of levels, including the base case, is $\log_2(n) + 1$.

For other recursive functions, where the base case doesn’t happen at $n \leq 1$, the number of recursive levels might be different than the height.
How many levels are there, exactly? Is it $\log_2(n)$?

Let’s try an example. Suppose we have $T(4)$. What happens?

```
 4
 / \ / \
 2 2
 / \ / \ / \n 1 1 1 1
```
How many levels are there, exactly? Is it $\log_2(n)$?

Let’s try an example. Suppose we have $T(4)$. What happens?

Height is $\log_2(4) = 2$.

For this recursive function, num recursive levels is same as height.
How many levels are there, exactly? Is it \( \log_2(n) \)?

Let’s try an example. Suppose we have \( T(4) \). What happens?

```
4
 \downarrow \downarrow
2 2
 \downarrow \downarrow
1 1 1 1
```

Height is \( \log_2(4) = 2 \).

For this recursive function, num recursive levels is same as height.

**Important**: total levels, counting base case, is height + 1.
How many levels are there, exactly? Is it $\log_2(n)$?

Let’s try an example. Suppose we have $T(4)$. What happens?

```
 4
 /\ \
 2 2
 /\ /\ \
 1 1 1 1
```

Height is $\log_2(4) = 2$.

For this recursive function, num recursive levels is same as height.

**Important:** total levels, counting base case, is height + 1.

**Important:** for other recursive functions, where base case doesn’t happen at $n \leq 1$, num recursive levels might be different then
The tree method: precise analysis

We discovered:

1. $\text{numNodes}(i) = 2^i$
2. $\text{workPerNode}(n, i) = \frac{n}{2^i}$
3. $\text{numLevels}(n) = \log_2(n)$
4. $\text{workPerLeafNode}(n) = 1$
5. $\text{numLeafNodes}(n) = 2^{\text{numLevels}(n)} = 2^{\log_2(n)} = n$
The tree method: precise analysis

We discovered:

1. $\text{numNodes}(i) = 2^i$
2. $\text{workPerNode}(n, i) = \frac{n}{2^i}$
3. $\text{numLevels}(n) = \log_2(n)$
4. $\text{workPerLeafNode}(n) = 1$
5. $\text{numLeafNodes}(n) = 2^{\log_2(n)} = n$

Our formulas:

$$\text{recursiveWork} = \sum_{i=0}^{\text{numLevels}(n)} \text{numNodes}(i) \cdot \text{workPerNode}(n, i)$$

$$\text{baseCaseWork} = \text{numLeafNodes}(n) \cdot \text{workPerLeafNode}(n)$$

$$\text{totalWork} = \text{recursiveWork} + \text{baseCaseWork}$$
The tree method: precise analysis

We discovered:

1. \( \text{numNodes}(i) = 2^i \)
2. \( \text{workPerNode}(n, i) = \frac{n}{2^i} \)
3. \( \text{numLevels}(n) = \log_2(n) \)
4. \( \text{workPerLeafNode}(n) = 1 \)
5. \( \text{numLeafNodes}(n) = 2^{\text{numLevels}(n)} = 2^{\log_2(n)} = n \)

Our formulas:

\[
\text{recursiveWork} = \sum_{i=0}^{\text{numLevels}(n)} \text{numNodes}(i) \cdot \text{workPerNode}(n, i)
\]

\[
\text{baseCaseWork} = \text{numLeafNodes}(n) \cdot \text{workPerLeafNode}(n)
\]
We discovered:

1. \( \text{numNodes}(i) = 2^i \)
2. \( \text{workPerNode}(n, i) = \frac{n}{2^i} \)
3. \( \text{numLevels}(n) = \log_2(n) \)
4. \( \text{workPerLeafNode}(n) = 1 \)
5. \( \text{numLeafNodes}(n) = 2^{\text{numLevels}(n)} = 2^{\log_2(n)} = n \)

Our formulas:

\[
\text{recursiveWork} = \sum_{i=0}^{\text{numLevels}(n)} \text{numNodes}(i) \cdot \text{workPerNode}(n, i)
\]

\[
\text{baseCaseWork} = \text{numLeafNodes}(n) \cdot \text{workPerLeafNode}(n)
\]

\[
\text{totalWork} = \text{recursiveWork} + \text{baseCaseWork}
\]
The tree method: precise analysis

Solve for recursive case:

\[
\text{recursiveWork} = \sum_{i=0}^{\log_2(n)} 2^i \cdot \frac{n}{2^i}
\]

Solve for base case:

\[
\text{baseCaseWork} = \text{numLeafNodes} \cdot \text{workDonePerLeafNode}
\]

So exact closed form is

\[
n \log_2(n) + n
\]
The tree method: precise analysis

Solve for recursive case:

\[
\text{recursiveWork} = \sum_{i=0}^{\log_2(n)} 2^i \cdot \frac{n}{2^i}
\]

\[
= \sum_{i=0}^{\log_2(n)} n
\]
The tree method: precise analysis

Solve for recursive case:

\[
\text{recursiveWork} = \sum_{i=0}^{\log_2(n)} 2^i \cdot \frac{n}{2^i}
\]

\[
= \sum_{i=0}^{\log_2(n)} n
\]

\[
= n \log_2(n)
\]

Solve for base case:

\[
\text{baseCaseWork} = \text{numLeafNodes}(n) \cdot \text{workDonePerLeafNode}(n)
\]

\[
= n \cdot 1 = n
\]
The tree method: precise analysis

Solve for recursive case:

\[
\text{recursiveWork} = \sum_{i=0}^{\log_2(n)} 2^i \cdot \frac{n}{2^i}
\]

\[
= \sum_{i=0}^{\log_2(n)} n
\]

\[
= n \log_2(n)
\]

Solve for base case:

\[
\text{baseCaseWork} = \text{numLeafNodes}(n) \cdot \text{workDonePerLeafNode}(n)
\]

\[
= n \cdot 1 = n
\]

So exact closed form is \[ n \log_2(n) + n. \]
Practice: Let’s go back to our old recurrence...

\[ S(n) = \begin{cases} 
2 & \text{if } n \leq 1 \\
2S\left(\frac{n}{3}\right) + n^2 & \text{otherwise}
\end{cases} \]
The tree method: practice

\[
\begin{align*}
\text{numNodes}(i) &= 2^i \\
\text{workPerNode}(n, i) &= n^{2^i} \\
\text{numLevels}(n) &= \log_3(n) \\
\text{workPerLeafNode}(n) &= 2 \\
\text{numLeafNodes}(n) &= 2^{\text{numLevels}(n)} = n \log_3(2)
\end{align*}
\]
The tree method: practice

1. `numNodes(i) = ?`
2. `workPerNode(n, i) = ?`
3. `numLevels(n) = ?`
4. `workPerLeafNode(n) = ?`
5. `numLeafNodes(n) = ?`
The tree method: practice

1. \( \text{numNodes}(i) = ? \)
2. \( \text{workPerNode}(n, i) = ? \)
3. \( \text{numLevels}(n) = ? \)
4. \( \text{workPerLeafNode}(n) = ? \)
5. \( \text{numLeafNodes}(n) = ? \)

1 node, \( n^2 \) work per
2 nodes, \( n^2 \frac{2}{3} \) work per
4 nodes, \( n^2 \frac{2}{3^2} \) work per
\( 2^i \) nodes, \( n^2 \frac{2}{3^{2i}} \) work per
\( 2^h \) nodes, 1 work per
The tree method: practice

1 node, \( n^2 \) work per

2 nodes, \( \frac{n^2}{3^2} \) work per

4 nodes, \( \frac{n^2}{3^4} \) work per

\( 2^i \) nodes, \( \frac{n^2}{3^{2i}} \) work per

\( 2^h \) nodes, 1 work per

1. \( \text{numNodes}(i) = 2^i \)
2. \( \text{workPerNode}(n, i) = \frac{n^2}{9^i} \)
3. \( \text{numLevels}(n) = \log_3(n) \)
4. \( \text{workPerLeafNode}(n) = 2 \)
5. \( \text{numLeafNodes}(n) = 2^{\text{numLevels}(n)} = 2^{\log_3(n)} = n^{\log_3(2)} \)

\( a^{\log_b(c)} = c^{\log_b(a)} \)
The tree method: practice

1. $\text{numNodes}(i) = 2^i$
2. $\text{workPerNode}(n, i) = \frac{n^2}{9^i}$
3. $\text{numLevels}(n) = \log_3(n)$
4. $\text{workPerLeafNode}(n) = 2$
5. $\text{numLeafNodes}(n) = 2^{\text{numLevels}(n)} = 2^{\log_3(n)} = n^{\log_3(2)}$

Combine into a single expression representing the total runtime.
The tree method: practice

1. \( \text{numNodes}(i) = 2^i \)
2. \( \text{workPerNode}(n, i) = \frac{n^2}{9^i} \)
3. \( \text{numLevels}(n) = \log_3(n) \)
4. \( \text{workPerLeafNode}(n) = 2 \)
5. \( \text{numLeafNodes}(n) = 2^{\text{numLevels}(n)} = 2^{\log_3(n)} = n^{\log_3(2)} \)

Combine into a single expression representing the total runtime.

\[
\text{totalWork} = \left( \sum_{i=0}^{\log_3(n)} 2^i \cdot \frac{n^2}{9^i} \right) + 2n^{\log_3(2)}
\]
The tree method: practice

1. \( \text{numNodes}(i) = 2^i \)
2. \( \text{workPerNode}(n, i) = \frac{n^2}{9^i} \)
3. \( \text{numLevels}(n) = \log_3(n) \)
4. \( \text{workPerLeafNode}(n) = 2 \)
5. \( \text{numLeafNodes}(n) = 2^{\text{numLevels}(n)} = 2^\log_3(n) = n^{\log_3(2)} \)

Combine into a single expression representing the total runtime.

\[
\text{totalWork} = \left( \sum_{i=0}^{\log_3(n)} 2^i \cdot \frac{n^2}{9^i} \right) + 2^{\log_3(2)}
\]

\[
= n^2 \sum_{i=0}^{\log_3(n)} \frac{2^i}{9^i} + 2^{\log_3(2)}
\]
The tree method: practice

1. \( \text{numNodes}(i) = 2^i \)
2. \( \text{workPerNode}(n, i) = \frac{n^2}{9^i} \)
3. \( \text{numLevels}(n) = \log_3(n) \)
4. \( \text{workPerLeafNode}(n) = 2 \)
5. \( \text{numLeafNodes}(n) = 2^{\text{numLevels}(n)} = 2^{\log_3(n)} = n^{\log_3(2)} \)

Combine into a single expression representing the total runtime.

\[
\text{totalWork} = \left( \sum_{i=0}^{\log_3(n)} 2^i \cdot \frac{n^2}{9^i} \right) + 2n^{\log_3(2)}
\]

\[
= n^2 \sum_{i=0}^{\log_3(n)} \frac{2^i}{9^i} + 2n^{\log_3(2)}
\]

\[
= n^2 \sum_{i=0}^{\log_3(n)} \left( \frac{2}{9} \right)^i + 2n^{\log_3(2)}
\]
The finite geometric series

We have:

\[ n^2 \sum_{i=0}^{\log_3(n)} \left( \frac{2}{9} \right)^i + 2n^{\log_3(2)} \]
The finite geometric series

We have: \[ n^2 \sum_{i=0}^{\log_3(n)} \left( \frac{2}{9} \right)^i + 2n^{\log_3(2)} \]

The finite geometric series identity: \[ \sum_{i=0}^{n-1} r^i = \frac{1 - r^n}{1 - r} \]
The finite geometric series

We have: \[ n^2 \sum_{i=0}^{\log_3(n)} \left(\frac{2}{9}\right)^i + 2n^{\log_3(2)} \]

The finite geometric series identity: \[ \sum_{i=0}^{n-1} r^i = \frac{1 - r^n}{1 - r} \]

Plug and chug:

\[ \text{totalWork} = n^2 \sum_{i=0}^{\log_3(n)} \left(\frac{2}{9}\right)^i + 2n^{\log_3(2)} \]

\[ = n^2 \sum_{i=0}^{\log_3(n)+1-1} \left(\frac{2}{9}\right)^i + 2n^{\log_3(2)} \]

\[ = n^2 \frac{1 - \left(\frac{2}{9}\right)^{\log_3(n)+1}}{1 - \frac{2}{9}} + 2n^{\log_3(2)} \]
Applying the finite geometric series

With a bunch of effort...

\[
\text{totalWork} = n^2 \frac{1 - \left(\frac{2}{9}\right)^{\log_3 n} + 1}{1 - \frac{2}{9}} + 2n^{\log_3 2}
\]

\[
= \frac{9}{7} n^2 \left(1 - \frac{2}{9} \left(\frac{2}{9}\right)^{\log_3 n}\right) + 2n^{\log_3 2}
\]

\[
= \frac{9}{7} n^2 - \frac{2}{7} n^2 \left(\frac{2}{9}\right)^{\log_3 n} + 2n^{\log_3 2}
\]

\[
= \frac{9}{7} n^2 - \frac{2}{7} n^2 n^{\log_3 (2/9)} + 2n^{\log_3 2}
\]

\[
= \frac{9}{7} n^2 - \frac{2}{7} n^2 n^{\log_3 (2) - 2} + 2n^{\log_3 2}
\]

\[
= \frac{9}{7} n^2 - \frac{2}{7} n^{\log_3 (2)} + 2n^{\log_3 2}
\]

\[
= \frac{9}{7} n^2 + \frac{12}{7} n^{\log_3 2}
\]
Is there an easier way?
Is there an easier way?

If we want to find an exact closed form, no. Must use either the unfolding technique or the tree technique.
The master theorem

Is there an easier way?

If we want to find an exact closed form, no. Must use either the unfolding technique or the tree technique.

If we want to find a big-$\Theta$ bound, yes.
The master theorem

Suppose we have a recurrence of the following form:

\[ T(n) = \begin{cases} 
    d & \text{if } n = 1 \\
    aT\left(\frac{n}{b}\right) + n^c & \text{otherwise}
\end{cases} \]
The master theorem

Suppose we have a recurrence of the following form:

\[ T(n) = \begin{cases} 
  d & \text{if } n = 1 \\
  aT\left(\frac{n}{b}\right) + n^c & \text{otherwise}
\end{cases} \]

Then...

- If \( \log_b(a) < c \), then \( T(n) \in \Theta(n^c) \)
- If \( \log_b(a) = c \), then \( T(n) \in \Theta(n^c \log(n)) \)
- If \( \log_b(a) > c \), then \( T(n) \in \Theta(n^{\log_b(a)}) \)
The master theorem

Given:

\[ T(n) = \begin{cases} 
  d & \text{if } \log_b(a) < c, \\
  aT\left(\frac{n}{b}\right) + n^c & \text{if } \log_b(a) = c, \\
  aT\left(\frac{n}{b}\right) + n^c & \text{if } \log_b(a) > c, 
\end{cases} \]

Then...

- If \( \log_b(a) < c \), then \( T(n) \in \Theta(n^c) \)
- If \( \log_b(a) = c \), then \( T(n) \in \Theta(n^c \log(n)) \)
- If \( \log_b(a) > c \), then \( T(n) \in \Theta(n^{\log_b(a)}) \)
The master theorem

Given:

\[ T(n) = \begin{cases} 
    d & \text{if } \log_b(a) < c, \\
    aT\left(\frac{n}{b}\right) + n^c & \text{if } \log_b(a) = c, \\
    aT\left(\frac{n}{b}\right) + n^c & \text{if } \log_b(a) > c, 
\end{cases} \]

Then...

- If \( \log_b(a) < c \), then \( T(n) \in \Theta(n^c) \)
- If \( \log_b(a) = c \), then \( T(n) \in \Theta(n^c \log(n)) \)
- If \( \log_b(a) > c \), then \( T(n) \in \Theta(n^{\log_b(a)}) \)

Sanity check: try checking merge sort.

Sanity check: try checking \( S(n) = 2S\left(\frac{n}{3}\right) + n^2 \).

We have \( a = 2, b = 3, c = 2 \). We know \( \log_3(2) \leq 1 < 2 = c \), therefore \( S(n) \in \Theta(n^2) \).
The master theorem

Given:

\[ T(n) = \begin{cases} 
  d & \text{if } \log_b(a) < c, \text{ then } T(n) \in \Theta(n^c) \\
  aT\left(\frac{n}{b}\right) + n^c & \text{if } \log_b(a) = c, \text{ then } T(n) \in \Theta(n^c \log(n)) \\
  d & \text{if } \log_b(a) > c, \text{ then } T(n) \in \Theta(n^{\log_b(a)}) 
\end{cases} \]

Then...

Sanity check: try checking merge sort.

We have \( a = 2, \ b = 2, \) and \( c = 1. \) We know \( \log_b(a) = \log_2(2) = 1 = c, \) therefore merge sort is \( \Theta(n \log(n)). \)
The master theorem

Given: \[ T(n) = \begin{cases} 
  d & \text{if } \log_b(a) < c, \text{ then } T(n) \in \Theta(n^c) \\
  aT\left(\frac{n}{b}\right) + n^c & \text{if } \log_b(a) = c, \text{ then } T(n) \in \Theta(n^c \log(n)) \\
  \end{cases} \]

Then...

Sanity check: try checking merge sort.

We have \(a = 2\), \(b = 2\), and \(c = 1\). We know \(\log_b(a) = \log_2(2) = 1 = c\), therefore merge sort is \(\Theta(n \log(n))\).

Sanity check: try checking \(S(n) = 2S(n/3) + n^2\).
The master theorem

Given:

\[ T(n) = \begin{cases} 
  d & \text{If } \log_b(a) < c, \text{ then } T(n) \in \Theta(n^c) \\
  aT\left(\frac{n}{b}\right) + n^c & \text{If } \log_b(a) = c, \text{ then } T(n) \in \Theta(n^c \log(n)) \\
  & \text{If } \log_b(a) > c, \text{ then } T(n) \in \Theta(n^{\log_b(a)})
\end{cases} \]

Then...

Sanity check: try checking merge sort.

We have \( a = 2, \ b = 2, \) and \( c = 1. \) We know
\[ \log_b(a) = \log_2(2) = 1 = c, \] therefore merge sort is \( \Theta(n \log(n)). \)

Sanity check: try checking \( S(n) = 2S(n/3) + n^2. \)

We have \( a = 2, \ b = 3, \) and \( c = 2. \) We know \( \log_3(2) \leq 1 < 2 = c, \) therefore \( S(n) \in \Theta(n^2). \)
Intuition, the $\log_b(a) < c$ case:

1. We do work more rapidly then we divide.
2. So, more of the work happens near the “top”, which means that the $n^c$ term dominates.
Intuition, the $\log_b(a) > c$ case:

1. We divide more rapidly than we do work.
2. So, most of the work happens near the “bottom”, which means the work done in the leaves dominates.
3. Note: Work in leaves is about
   $$d \cdot a^{\text{height}} = d \cdot a^{\log_b(n)} = d \cdot n^{\log_b(a)}.$$
Intuition, the $\log_b(a) = c$ case:

1. Work is done roughly equally throughout tree.
2. Each level does about the same amount of work, so we approximate by just multiplying work done on first level by the height: $n^c \log_b(n)$. 