CSE 373: Floyd’s buildHeap algorithm; divide-and-conquer

Michael Lee
Wednesday, Feb 7, 2018

Warmup

Warmup:
Insert the following letters into an empty binary min-heap. Draw the heap’s internal state in both tree and array form:

\[c, b, a, a, a, c \]

In tree form

```
               2
              / \  
             a   b
            /     /
           c     c
```

In array form

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>b</td>
<td>a</td>
<td>c</td>
<td>a</td>
<td>a</td>
<td>c</td>
<td></td>
</tr>
</tbody>
</table>

The array-based representation of binary heaps

Take a tree:

```
          A
         / \  
        B   C
       / \   /
      D   E F
     / \ / \ /  
    H  I J  K L
```

How do we find parent?

\[
\text{parent}(i) = \left\lfloor \frac{i - 1}{2} \right\rfloor
\]

The left child?

\[
\text{leftChild}(i) = 2i + 1
\]

The right child?

\[
\text{rightChild}(i) = 2i + 2
\]

And fill an array in the level-order of the tree:

```
<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>H</td>
<td>I</td>
<td>J</td>
<td>K</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Finding the last node

If our tree is represented using an array, what’s the time needed to find the last node now?

\[\Theta(1): \text{just use this.array[this.size - 1]}. \]

...assuming array has no 'gaps'. (Hey, it looks like the structure invariant was useful after all)

Re-analyzing insert

How does this change runtime of insert?

Runtime of insert:

\[
\text{findLastNodeTime} + \text{addNodeToLastTime} + \text{numSwaps} \times \text{swapTime}
\]

...which is:

\[1 + 1 + \text{numSwaps} \times 1 \]

Observation: when percolating, we usually need to percolate up a few times! So, \(\text{numSwaps} \approx 1 \) in the average case, and \(\text{numSwaps} \approx \log(n) \) in the worst case!

Re-analyzing removeMin

How does this change runtime of removeMin?

Runtime of removeMin:

\[
\text{findLastNodeTime} + \text{removeRootTime} + \text{numSwaps} \times \text{swapTime}
\]

...which is:

\[1 + 1 + \text{numSwaps} \times 1 \]

Observation: unfortunately, in practice, usually must percolate all the way down. So \(\text{numSwaps} \approx \text{height} \approx \log(n) \) on average.
Project 2

Deadlines:

- Partner selection: Fri, Feb 9
- Part 1: Fri, Feb 16
- Parts 2 and 3: Fri, Feb 23

Make sure to...

- Find a different partner for project 3
- ...or email me and petition to keep your current partner

Grades

Some stats about the midterm:

- Mean and median ≈ 80 (out of 100)
- Standard deviation ≈ 13

An interesting extension

Common questions:

- I want to know how to do better next time
 - Feel free to schedule an appointment with me.
- How will final grades be curved?
 - Not sure yet.
- I want a midterm regrade.
 - Wait a day, then email me.
- I want a regrade on a project or written homework
 - Fill out regrade request form on course website.

An interesting extension

Idea 1: just call insert n times – total runtime of $\Theta(n \log(n))$

Can we do better?

Yes! Possible to do in $\Theta(n)$ time, using “Floyd’s buildheap algorithm”.

Floyd’s buildHeap algorithm

The basic idea:

- Start with an array of all n elements
- Start traversing backwards – e.g. from the bottom of the tree to the top
- Call $\text{percolateDown}(...)$ per each node
Floyd's buildheap algorithm: example

A visualization:

```
          10
         /  \
        9    8
       / \  / \n      7  6 5  4
     /   /   /   /
    3   2   1   0
```

```
0  1  2  3  4  5  6  7  8  9  10 11 12 13 14 15
10 9 8 7 6 5 4 3 2 1 0
```
Floyd's buildheap algorithm example

A visualization:

Floyd's buildheap algorithm example

A visualization:

Floyd's buildheap algorithm example

A visualization:

Floyd's buildheap algorithm example

Floyd's buildheap algorithm example

A visualization:

Floyd's buildheap algorithm

Wait... isn’t this still $n \log(n)$?

We look at n nodes, and we run `percolateDown(...)` on each node, which takes $\log(n)$ time... right?

Yes – algorithm is $\mathcal{O}(n \log(n))$, but with a more careful analysis, we can show it’s $\mathcal{O}(n)$!

Analyzing Floyd’s buildheap algorithm

Question: How much work is `percolateDown` actually doing?

$$
\begin{align*}
\text{work}(n) & \approx \frac{n}{2} \cdot 1 + \frac{n}{4} \cdot 2 + \frac{n}{8} \cdot 3 + \cdots \\
& = \sum_{i=1}^{\infty} \frac{n}{2^i} \cdot i
\end{align*}
$$
Analyzing Floyd’s buildheap algorithm

We had:

\[\text{work}(n) \approx \frac{n}{2} \cdot 1 + \frac{n}{4} \cdot 2 + \frac{n}{8} \cdot 3 + \cdots \]

Let’s rewrite bottom as powers of two, and factor out the \(n \):

\[\text{work}(n) \approx n \left(\frac{1}{2^1} + \frac{2}{2^2} + \frac{3}{2^3} + \cdots \right) \]

Can we write this in summation form? Yes.

\[\text{work}(n) \approx n \sum_{i=1}^{\infty} \frac{i}{2^i} \]

What is \(i \) supposed to be? It’s the height of the tree: so \(\log(n) \).
(Seems hard to analyze...) So let’s just make it infinity!

\[\text{work}(n) \approx n \sum_{i=1}^{\infty} \frac{i}{2^i} \leq n \sum_{i=1}^{\infty} \frac{i}{2^i} \]

Using an identity (see page 4 of Weiss):

\[\text{work}(n) \leq n \sum_{i=1}^{\infty} \frac{i}{2^i} = n \cdot 2 \]

So \text{buildHeap} runs in \(O(n) \) time!

Lessons learned:

► Most of the nodes near leaves (almost 1/2 of nodes are leaves!) So design an algorithm that does less work closer to ‘bottom’

► More careful analysis can reveal tighter bounds

► Strategy: rather then trying to show \(a \leq b \) directly, it can sometimes be simpler to show \(a \leq t \) then \(t \leq b \). (Similar to what we did when finding \(c \) and \(n_0 \) questions when doing asymptotic analysis!)

Analyzing Floyd’s buildheap algorithm

Strategy: prove the summation is upper-bounded by something even when the summation goes on for infinity.

If we can do this, then our original summation must definitely be upper-bounded by the same thing.

\[\text{work}(n) \approx n \sum_{i=1}^{\infty} \frac{i}{2^i} \leq n \sum_{i=1}^{\infty} \frac{i}{2^i} \]

Using an identity (see page 4 of Weiss):

\[\text{work}(n) \leq n \sum_{i=1}^{\infty} \frac{i}{2^i} = n \cdot 2 \]

So \text{buildHeap} runs in \(O(n) \) time!

What we’re skipping

► How do we merge two heaps together?

► Other kinds of heaps (leftist heaps, skew heaps, binomial queues)

On to sorting

And now on to sorting...

Why study sorting?

Why not just use \text{Collections.sort(...)}?

► You should just use \text{Collections.sort(...)}

► A vehicle for talking about a technique called “divide-and-conquer”

► Different sorts have different purposes/tradeoffs. (General purpose sorts work well most of the time, but you might need something more efficient in niche cases)

► It’s a “thing everybody knows”.
Types of sorts

Two different kinds of sorts:

Comparison sorts

Works by **comparing** two elements at a time.

Assumes elements in list form a **consistent, total ordering**:

Formally: for every element \(a, b,\) and \(c\) in the list, the following must be true.

- If \(a \leq b\) and \(b \leq a\) then \(a = b\)
- If \(a \leq b\) and \(b \leq c\) then \(a \leq c\)
- Either \(a \leq b\) is true, or \(b \leq a\) is true (or both)

Less formally: the `compareTo(...)` method can’t be broken.

Fact: comparison sorts will run in \(O(n \log n)\) time at best.

Niche sorts (aka “linear sorts”)

Exploits certain properties about the items in the list to reach faster runtimes (typically, \(O(n)\) time).

Faster, but less general-purpose.

We’ll focus on comparison sorts, will cover a few linear sorts if time.

More definitions

In-place sort

A sorting algorithm is **in-place** if it requires only \(O(1)\) extra space to sort the array.

- Usually modifies input array
- Can be useful: lets us minimize memory

Stable sort

A sorting algorithm is **stable** if any equal items remain in the same relative order before and after the sort.

- Observation: We sometimes want to sort on some, but not all attribute of an item
- Items that ‘compare’ the same might not be exact duplicates
- Sometimes useful to sort on one attribute first, then another

Overview of sorting algorithms

There are many sorts...

Quicksort, Merge sort, In-place merge sort, Heap sort, Insertion sort, Intro sort, Selection sort, Timsort, Cubesort, Shell sort, Bubble sort, Binary tree sort, Cycle sort, Library sort, Patience sorting, Smooshsort, Strand sort, Tournament sort, Cocktail sort, Comb sort, Gnome sort, Block sort, Stackoverflow sort, Odd-even sort, Pigeonhole sort, Bucket sort, Counting sort, Radix sort, Spreadsort, Burstsort, Flashsort, Postman sort, Bead sort, Simple pancake sort, Spaghetti sort, Sorting network, Bitonic sort, Bogosort, Stooge sort, Insertion sort, Slow sort, Rainbow sort...

...we’ll focus on a few
Insertion Sort

Pseudocode

```java
for (int i = 1; i < n; i++) {
    int newIndex = findPlace(i);
    // Insert and shift nodes over
    shift(newIndex, i);
}
```

Analysis

- **Worst case runtime?**
- **Best case runtime?**
- **Average runtime?**
- **Stable?**
- **In-place?**

Worst case runtime in O(n^2).

In the worst case, both `findPlace` and `shift` will need to do about \(i\) steps. Our runtime model is then \(\sum i\) which will be in \(O(n^2)\).

Best case runtime?

- **The best case** is when the list is already sorted. Then, `findPlace` only needs to look at the last item and `shift` does nothing. So, the runtime is \(O(n)\).

Average runtime?

- We don’t really know how to analyze the **average case**, but it ends up being \(O(n^2)\).

Stable?

- Insertion sort can be implemented to be either stable or unstable, depending on how we insert duplicate entries. It’s usually implemented to be **stable**.

In-place?

- Insertion sort is **in-place**.
Selection Sort

Pseudocode

```
for (int i = 0; i < n; i++) {
    int newIndex = findNextMin(i);
    // Swap current and next smallest
    swap(newIndex, i);
}
```

Worst case runtime?
Best case runtime?
Average runtime?
Stable?
In-place?

In the worst case, \(\text{findNextMin} \) will need to do about \(n - i \) steps per iteration. Our runtime model is then \(\sum_{i=0}^{n-1} (n - i) \) which will be in \(O(n^2) \).

Regardless of what the list looks like, we know nothing about the unsorted region so \(\text{findNextMin} \) must still scan the next \(n - i \) items. So, the best case is the same as the worst case: \(O(n^2) \).

The average case is therefore \(O(n^2) \).

Same thing as insertion sort – we can choose if we want our implementation to be stable or not; so we might as well make it stable.

Selection sort is in-place.

Heap Sort

Can we use heaps to help us sort?

Idea: run \(\text{buildHeap} \) then call \(\text{removeMin} \) \(n \) times.

Pseudocode

```
E[] input = buildHeap(...);
E[] output = new E[n];
for (int i = 0; i < n; i++) {
    output[i] = removeMin(input);
}
```

Worst case runtime?
Best case runtime?
Average runtime?
Stable?
In-place?

We know \(\text{buildHeap} \) is \(O(n) \) and \(\text{removeMin} \) is \(O(\log(n)) \) so the total runtime in the worst case is \(O(n \log(n)) \).

The best case is the same as the worst case: \(O(n \log(n)) \).

The average case is therefore \(O(n \log(n)) \).

Heap sort is not stable – the heap methods don’t respect the relative ordering of items that are considered the ‘same’ by the compare function.

This version of heap sort is not in-place.

Heap Sort: In-place version

Can we do this in-place?

Idea: after calling \(\text{removeMin} \), input array has one new space. Put the removed item there.

Pseudocode

```
E[] input = buildHeap(...);
for (int i = 0; i < n; i++) {
    input[n - i - 1] = removeMin(input);
}
```

Complication: when using in-place version, final array is reversed!

Several possible fixes:

1. Run reverse afterwards (seems wasteful?)
2. Use a max heap
3. Reverse your compare function to emulate a max heap
Technique: Divide-and-Conquer

Divide-and-conquer is a useful technique for solving many kinds of problems. It consists of the following steps:

1. Divide your work up into smaller pieces (recursively)
2. Conquer the individual pieces (as base cases)
3. Combine the results together (recursively)

Example template

```python
algorithm(input) {
  if (small enough) {
    CONQUER, solve, and return input
  } else {
    DIVIDE input into multiple pieces
    RECURSE on each piece
    COMBINE and return results
  }
}
```

Merge sort: Core pieces

Divide: Split array roughly into half

Conquer: Return array when length ≤ 1

Combine: Combine two sorted arrays using merge

Merge sort: Summary

Core idea: split array in half, sort each half, merge back together. If the array has size 0 or 1, just return it unchanged.

Pseudocode

```python
sort(input) {
  if (input.length < 2) {
    return input;
  } else {
    smallerHalf = sort(input[0,...,mid]);
    largerHalf = sort(input[mid+1,...]);
    return merge(smallerHalf, largerHalf);
  }
}
```
Merge sort: Example

5 10 7 2 3 6 2 11

Merge sort: Example

5 10 7 2

5 10 7 2

5 10 7 2

Merge sort: Example

2 5 7 10

2 5 7 10

2 5 7 10

Pseudocode

sort(input) {
 if (input.length < 2) {
 return input;
 } else {
 smallerHalf = sort(input[0,...,mid]);
 largerHalf = sort(input[mid+1,...]);
 return merge(smallerHalf, largerHalf);
 }
}

Best case runtime? Worst case runtime?

42
43
Best and worst case

We always subdivide the array in half on each recursive call, and merge takes $O(n)$ time to run. So, the best and worst case runtime is the same:

$$T(n) = \begin{cases}
1 & \text{if } n \leq 1 \\
2T(n/2) + n & \text{otherwise}
\end{cases}$$

But how do we solve this recurrence?

Stability and In-place

If we implement the `merge` function correctly, merge sort will be stable.

However, `merge` must construct a new array to contain the output, so merge sort is not in-place.

Analyzing recurrences, part 2

We have:

$$T(n) = \begin{cases}
1 & \text{if } n \leq 1 \\
2T(n/2) + n & \text{otherwise}
\end{cases}$$

Problem: Unfolding technique is a major pain to do

Next time: Two new techniques:

- Tree method: requires a little work, but more general purpose
- Master method: very easy, but not as general purpose