CSE 373: Open addressing

Michael Lee
Friday, Jan 26, 2018

Warmup

Warmup:

With your neighbor, discuss and review:

> How do we implement get, put, and remove in a hash table
using separate chaining?

> What about in a hash table using open addressing with linear
probing?

> Compare and contrast your answers: what do we do the
same? What do we do differently?

In both implementations, for all three methods, we start by finding

the initial index to consider:

If we're using separate chaining, we then search/insert/delete from
the bucket:

IDictionary, > bucket = arraylindex]
tgetlkey) /] ar put(...) or -remaveC

and resize when A = 1

(When exactly to resize is a tuneable parameter)

If we're using linear probing, search until we find an array element
where the key is equal to ours or until the array index s null

il
ndex]

his.arrsy.

index = Cindex

How do we delete? (complicated, see section 04 handouts)

When do we resize?

near probing

Strategy: Linear probing
If we collide, checking each next element until we find an open slot
So, H(k.i) = (h(K) +) mod T, where T s the table size

while index in u
try (hash ey

Open addressing: linear probing Open addressing: linear probing

Assume internal capacity of 10, insert the following keys:

38,19, 8, 109, 10
Primary clustering

4 5 6 7 8 9 When using linear probing, we sometimes end up with a long

chain of occupied slots.

This problem is known as “primary clustering”

0 1 2 3 4 5 6 7 8 9
Happens when X is large, or if we get unlucky

[[[[=]»]
In linear probing, we expect to get O (Ig(n)) size clusters.

What's the problem? Lots of keys close together: a “cluster”. We
ended up having to probe many slots!
s

Open addressing: linear probing Open addressing: linear probing

Average numser ofproves gven s fctr

Questions:
> When is performance good? When is it bad? 5
Runtime is bad when table is nearly full t
Runtime is also bad when we hit a “cluster
> What is the maximum load factor?
Load factor is at most A = 101 o
> When do we resize?

Punchline: clustering can be potentially bad, but in practice, it
o tends to be ok as long as \ is small

Open addressing: linear probing Open addressing: quadratic probing

Problem: We can still get unlucky/somebody can feed us a
malicious series of inputs that causes several slowdown

Question: when do we resize?

Usually when A =~}

Can we pick a different collision strategy that minimizes clustering?
Idea: Rather then probing linearly, probe quadratically!
Nifty equations: Exercise: assume internal capacity of 10, insert the following:

> Average number of probes for successful probe 89, 18, 49, 58, 79

L, 1
PARRNTEDY) 0o 1
> Average number of probes for unsuccessful probe:

l(1)
s\t Ty,
EACRRTESY: -

*These equations aren't important to know
49 58 | 79 18

Open addressing: quadratic probing

Strategy: Quadratic probing

If we collide: A(k,i) = (h(k) + i%) mod T, where T is table size

while Cindex in use
try Chashckey) *+ 5 £) % array

Open addressing: quadratic probing

What problems are there?

Problem 1 If A > 4, quadratic probing may fal to find an empty
sot: it can potentially loop forever!

Problem 2: Still can get clusters (though not as badly)

Open addressing: quadratic probing

Secondary clustering
When using quadratic probing, we sometimes need to probe a
sequence of table cells (that are not necessary next to each
other). This problem is known as “secondary clustering”
Ex: inserting 19, 39, 29, 9

0 1 2 3 4 5 6 7 8 9

Note: let s = (k)

> Linear probing:

540,541,542 543, s+4,

Basic patten: try b (k. i) = (h(k) + i) mod T
> Quadratic probing: s +0, s+ 1, 5+2% s+3% s
= (h(k)+ *)mod T

Basic patten: try A/(k. i

LTI T T T[T

Secondary clustering can also be bad, but is generally milder then

Observation: For both probing strategies, there are just O (T)
different “probe sequences” — distinct ways we can probe the array.
Idea: Can we increase the number of distinct probe sequences to

primary clustering decrease odds of collision?

Open addressing: double-hashing

Strategy: Double hashing

Open addressing: double-hashing

Idea: With linear and quadratic probing, we jump by the same

increments. Can we try jumping in a different way per each key?

Only effective if g(k) returns a value that's relatively prime to the
table size.

Use a second hash function!

Let s = h(k), let j = g(k): Ways we can do this:

0, s+, s+2, 5+ 3, 5+ 4,

LS S > If T is a power of two, make g(k) return any odd integer
Basic pattern: try h'(k,i) = (h(k) +i- g(k)) mod T > If T is a prime, make g(k) return any smaller, non-zero
In pseudocode: integer (e.g. g(k) = 1+ (k mod (T — 1))
while (index in use)

try (hashkey) + 1+ Joro_hashchey)) * array

Open addressing

How many different probe sequences are there?

There are T different starting positions, T — 1 different jump
intervals (since we can't jump by 0), so there are O (T?) different
probe sequences

Result: in practice, double-hashing is very effective and commonly
used “in the wild"

Summary

So, what strategy is best? Separate chaining? Open addressing?
No obvious answer: both implementations are common.

Separate chaining:

> Don't have to worry about clustering

» Potentially more “compact” (A can be higher)
Open addressing:

> Managing clustering can be tricky

> Less compact (we typically keep A < 1)

> Array lookups tend to be a constant factor faster then
traversing pointers

Applications of hash functions

Can we use hash functions for more then just dictionaries?

Yes!

Lots of possible applications, ranging from cryptography to biology.

Important: Depending on the application, we might want our
hash function to have different properties.

Applications of hash functions

How would you implement the following using hash functions?

For each application, also discuss what properties you want your
hash function to have.

> Suppose we're sending a message over the internet. This
message might become mildly corrupted. How can we detect
if corruption probably occurred?

> Suppose you have many fragments of DNA and want to see
where they appears in a (significantly longer) segment of
DNA. How can we do this efficiently?

Applications of hash functions

Same question as before:

> Suppose you're designing an video uploading site and want to
detect if somebody is uploading a pirated movie. A naive way
to do this is to check if the movie s byte-for-byte identical to
some movie. How can we do this more efficiently?

> Suppose you're designing a website with a user login system.
Directly storing your user's passwords is dangerous - what if
they get stolen? How can you store password in a safe way so
that even if they're stolen, the passwords aren’t compromised?

Applications of hash functions

Same question as before:

> You are trying to build an image sharing site. Users upload
many images, and you need to assign each image some unique
ID. How might you do this?

> Suppose we have a long series of financial transactions stored
on some (potentially untrustworthy) computer. Somebody
claims they made a specific transaction several months ago.
Can you design a system that lets you audit and determine if
they're lying or not? Assume you have access to just the very
Iatest transaction, obtained from a different trustworthy
source.

