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Consider an IntegerDictionary using separate chaining with an
internal capacity of 10. Assume our buckets are implemented using
a linked list where we append new key-value pairs to the end.

Now, suppose we insert the following key-value pairs. What does
the dictionary internally look like?

(L 2). (5.5). (11, a), (7. d), (12, ¢), (17, ), (L g). (25, h)
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Consider an IntegerDictionary using separate chaining with an
internal capacity of 10. Assume our buckets are implemented using
a linked list where we append new key-value pairs to the end.

Now, suppose we insert the following key-value pairs. What does
the dictionary internally look like?

(1, a), (5, b), (11, a), (7, d), (12, e), (17, f), (1, g), (25, h)
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Announcements

Written HW 1 due tonight at 11:30pm
PSA:

» For questions involving math, make sure it's easy for us to
follow your work
» Don't just spit out equations without context, add some text
to (briefly) explain what you're doing
> Neatly label or circle your final answer

» Make sure you're submitting to the right place on Canvas
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Project 2 released, due Wed Jan 24

P Partner selection due Thursday

Can work with same partner or different one



Announcements

Project 2 released, due Wed Jan 24

P Partner selection due Thursday

Can work with same partner or different one
> About project

» Bulk of project is spent implementing a hash table, using
separate chaining

» Will need to add an iterator to ArrayDictionary and your hash
table

» Implementing iterator for hash table may be tricky, don't leave
it to the last moment
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Times:

» Midterm on Friday, Feb 2, in-class
» Will last 80 minutes (3:30 to 4:50)



Core details

Times:

» Midterm on Friday, Feb 2, in-class
» Will last 80 minutes (3:30 to 4:50)

Review sessions

» Monday, Jan 29: Gowen 201, 4:30 to 6:30
» Tuesday, Jan 30: Gowen 201, 4:30 to 6:30
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Midterm topics

Full list of topics available on course website now. Summary:

» Basic data structures (stacks, queues, list)
> Asymptotic analysis, modeling code

» Trees (BSTs and AVL trees)

» Hash tables

» Systems and B-Trees (on a high-level)



Midterm topics

Full list of topics available on course website now. Summary:

» Basic data structures (stacks, queues, list)
> Asymptotic analysis, modeling code

» Trees (BSTs and AVL trees)

> Hash tables

» Systems and B-Trees (on a high-level)

Topics NOT covered on the midterm

» Finding the closed form of summations or recurrences

» Sorting

» Heaps

» Anything about Java (generics, interfaces, junit, eclipse, etc)



Practice

» Past CSE 373 midterms available on course website

» Past sections

» Questions on written homework 1 are representative of what

will appear on midterm
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A hash function is a mapping from the key set U to an integer.



Hash functions

Hash function

A hash function is a mapping from the key set U to an integer.

Or, in other words, a function that turns the input into an integer

in some way.
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1. We receive a key
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How do we use a hash function?

1. We receive a key
2. We run the hash function to get some integer

3. We do the same thing we did for IntegerDictionary



Analyzing hash function

Exercise: let's convert a string into an integer.
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Analyzing hash function

Exercise: let's convert a string into an integer.
What we have:

public class OurString {
char[] chars;
int size;

// etc...
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Analyzing hash function

Exercise: let's convert a string into an integer.
What we have:

public class OurString {
char[] chars;

int size;
// etc...
}
Our goal:

int hashCode(str)
// What goes here?
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Analyzing hash functions

In math: h(s) =1
In pseudocode:

int hashCode(str)
return 1
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Analyzing hash functions
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Analyzing hash functions

In math: h(s) =1
In pseudocode:

int hashCode(str)
return 1

Bad idea: Every string has same hash code! Everything collides!

(But hey, at least it's fast...)
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Analyzing hash functions
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Analyzing hash functions

In math: h(s) = Z G

In pseudocode:

int hashCode(str)
int out = 0
for (char ¢ : str.chars) {
// Use ASCII value of char
out += ¢
return out

Good idea? Bad idea?
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Analyzing hash functions

s|—1
In math: h(s) = E Si
i=0
In pseudocode:
int hashCode(str)
int out = 0
for (char ¢ : str.chars) {
// Use ASCII value of char

out += ¢
return out

Better but not ideal: Still too many collisions! Ex: “baker” and
“brake”, and “break” all have same hash code!

Runtime: still pretty decent, relatively speaking

Insight: can we use character positions somehow?
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Analyzing hash functions

i
In math: h(s) =2% .35 .5%2.7%.11% ...

In pseudocode:

int hashCode(str)
int out =1
for (char c : str.chars)
int nextPrime = get next prime number
out *= Math.pow(nextPrime, c)
return out
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Analyzing hash functions

In math: h(s) =2% .35 .5%2.7%.11%...
In pseudocode:
int hashCode(str)
int out =1
for (char c : str.chars)
int nextPrime = get next prime number

out *= Math.pow(nextPrime, c)
return out

Not ideal: Hideously expensive, creates gigantic integers

(But hey, at least every string maps to a unique int!)
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Analyzing hash functions

[s|—1
In math: h(s) = Z 315
i=0

In code:

int hashCode(str)
int accum = 1
int out = 0
for (char c : s.chars)
out += accum * ¢
———R

accum_*=_31

return out
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Analyzing hash functions

[s|—1
In math: h(s) = Z 315
i=0

In code:

int hashCode(str)
int accum = 1
int out = 0
for (char c : s.chars)
out += accum * ¢
accum *= 31
return out

Good idea? Bad idea?

14



Analyzing hash functions

[s|—1
In math: h(s) = Z 315
i=0

In code:

int hashCode(str)
int accum = 1
int out = 0
for (char c : s.chars)
out += accum * c
accum *= 31
return out

Good idea: Uses both character values and positions.
Strikes good balance between efficiency and reducing collisions.

(Why use 31?7 People tried a bunch of different strategies, and this
one seemed to work well “in practice”)
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Hash functions

So, what does a good hash function look like?

Using hash functions inside dictionaries: useful properties
A hash function that is intended to be used for a dictionary
should ideally have the following properties:

» Low collision rate:
The hash of two different inputs should usually be different.

We want to minimize collisions as much as possible.
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So, what does a good hash function look like?

Using hash functions inside dictionaries: useful properties
A hash function that is intended to be used for a dictionary
should ideally have the following properties:

» Low collision rate:
The hash of two different inputs should usually be different.

We want to minimize collisions as much as possible.

» Uniform distribution of outputs:
In Java, there are 232 32-bit ints. So, the probability that the hash

function returns any individual int should be 73
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Hash functions

So, what does a good hash function look like?
Using hash functions inside dictionaries: useful properties

A hash function that is intended to be used for a dictionary
should ideally have the following properties:

» Low collision rate:
The hash of two different inputs should usually be different.

We want to minimize collisions as much as possible.

» Uniform distribution of outputs:
In Java, there are 232 32-bit ints. So, the probability that the hash
function returns any individual int should be 73

» Low computational cost:
We will be computing the hash function a lot, so we need it to be

very easy to compute.
15



Client vs implementor

Who implements the hash function? The client, or the dictionary?
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Client vs implementor

Who implements the hash function? The client, or the dictionary?

Client responsibilities

» Responsible for implementing a “good” hash function.

» The hash function avoids “wasting” information in the key or
the output bits while still being “fast”.
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Client vs implementor

Who implements the hash function? The client, or the dictionary?

Client responsibilities

» Responsible for implementing a “good” hash function.

» The hash function avoids “wasting” information in the key or
the output bits while still being “fast”.
Dictionary /implementor responsibilities

» Responsible for calling the hash function
» Responsible for managing the internal array

» Responsible for keeping track of collisions
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A Java interlude...

So, how does this work in Java?
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A Java interlude...

So, how does this work in Java?

Every object has a default equals and hashCode implementation.
Override these two methods.
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A Java interlude...

So, how does this work in Java?

Every object has a default equals and hashCode implementation.
Override these two methods.

Important invariants

When implementing hashCode, you MUST respect these

invariants!

» |IF you implement hashCode(...),
THEN you MUST also implement equals(...)

» |F a.equals(b),
THEN you MUST make sure that a.hashCode() ==
b.hashCode()
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Handling multiple fields

What if an object has multiple fields?
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Handling multiple fields

What if an object has multiple fields?

General considerations:

» Trade-off: hashing time vs collision avoidance

» Are some fields redundant? Do you need to hash all of them?
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Handling multiple fields

What if an object has multiple fields?
General considerations:

» Trade-off: hashing time vs collision avoidance

» Are some fields redundant? Do you need to hash all of them?
Tips for creating hashes

» Use all 32 bits (including negative numbers!)
» Use different overlapping bits for different parts of the hash
» If keys are known ahead of time, choose a perfect hash

P> Use expertise of others: consult books, have your IDE
auto-generate a hash function...
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Handling collisions

Insight:

The majority of our time is spent handling collisions
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Handling collisions

Insight:

The majority of our time is spent handling collisions

Our strategy so far:

» Design a good hash function to minimize chance of collision

» If we do have a collision, store both in a “bucket”
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Handling collisions

Insight:

The majority of our time is spent handling collisions

Our strategy so far:

» Design a good hash function to minimize chance of collision
» If we do have a collision, store both in a “bucket”

Are there other strategies for storing collisions?

Yes: something called open addressing
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Open addressing

Open addressing

Open addressing is a kind of collision resolution strategy that
resolves collisions by chosing a different location when the
natural choice is full.
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Open addressing: linear probing

Exercise: assume internal capac{ty of 10, insert the following keys:
rA
v
1,5,11, 7,12, 17,6, 25

— —

0o 1 Y Y Wg

>< | l}‘z, 12| S| 6| 7 12(2S
Mv

39,\()2. . D

[y, .



Open addressing: linear probing

Exercise: assume internal capacity of 10, insert the following keys:

1,511, 7,12, 17, 6, 25
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Open addressing: linear probing

Strategy: Linear probing
If we collide, checking each next element until we find an open slot.
So, W' (k,i) = (h(k)+ i) mod T, where T is the table size

i=o0

while (index in use)

try (hash(key) + i) % array.length
i+=1
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