
CSE 373: Hash functions and open addressing

Michael Lee
Wednesday, Jan 24, 2018

1

Warmup

Consider an IntegerDictionary using separate chaining with an
internal capacity of 10. Assume our buckets are implemented using
a linked list where we append new key-value pairs to the end.

Now, suppose we insert the following key-value pairs. What does
the dictionary internally look like?

(1, a), (5, b), (11, a), (7, d), (12, e), (17, f), (1, g), (25, h)

0 1 2 3 4 5 6 7 8 9

(1,g)

(11,a)

(12,e) (5,b)

(25,h)

(7,d)

(17,f)

2

Announcements

Written HW 1 due tonight at 11:30pm

PSA:

I For questions involving math, make sure it’s easy for us to
follow your work
I Don’t just spit out equations without context, add some text

to (briefly) explain what you’re doing
I Neatly label or circle your final answer

I Make sure you’re submitting to the right place on Canvas

3

Announcements

Project 2 released, due Wed Jan 24

I Partner selection due Thursday
Can work with same partner or different one

I About project
I Bulk of project is spent implementing a hash table, using

separate chaining
I Will need to add an iterator to ArrayDictionary and your hash

table
I Implementing iterator for hash table may be tricky, don’t leave

it to the last moment

4

Midterm

Core details

Times:

I Midterm on Friday, Feb 2, in-class
I Will last 80 minutes (3:30 to 4:50)

Review sessions

I Monday, Jan 29: Gowen 201, 4:30 to 6:30
I Tuesday, Jan 30: Gowen 201, 4:30 to 6:30

5

Midterm

Midterm topics

Full list of topics available on course website now. Summary:

I Basic data structures (stacks, queues, list)
I Asymptotic analysis, modeling code
I Trees (BSTs and AVL trees)
I Hash tables
I Systems and B-Trees (on a high-level)

Topics NOT covered on the midterm

I Finding the closed form of summations or recurrences
I Sorting
I Heaps
I Anything about Java (generics, interfaces, junit, eclipse, etc)

6

Midterm

Practice

I Past CSE 373 midterms available on course website
I Past sections
I Questions on written homework 1 are representative of what

will appear on midterm

7

Hash functions

Hash function
A hash function is a mapping from the key set U to an integer.

Or, in other words, a function that turns the input into an integer
in some way.

8

How do we use a hash function?

1. We receive a key
2. We run the hash function to get some integer
3. We do the same thing we did for IntegerDictionary

9

Analyzing hash function

Exercise: let’s convert a string into an integer.

What we have:

public class OurString {

char[] chars;

int size;

// etc...

}

Our goal:

int hashCode(str)

// What goes here?

10

Analyzing hash functions

In math: h(s) = 1

In pseudocode:

int hashCode(str)

return 1

Bad idea: Every string has same hash code! Everything collides!

(But hey, at least it’s fast...)

11

Analyzing hash functions

In math: h(s) =
|s|−1∑
i=0

si

In pseudocode:

int hashCode(str)

int out = 0

for (char c : str.chars) {

// Use ASCII value of char

out += c

return out

Better but not ideal: Still too many collisions! Ex: “baker” and
“brake”, and “break” all have same hash code!

Runtime: still pretty decent, relatively speaking

Insight: can we use character positions somehow?

12

Analyzing hash functions

In math: h(s) = 2s0 · 3s1 · 5s2 · 7s3 · 11s4 · · ·

In pseudocode:

int hashCode(str)

int out = 1

for (char c : str.chars)

int nextPrime = get next prime number

out *= Math.pow(nextPrime, c)

return out

Not ideal: Hideously expensive, creates gigantic integers

(But hey, at least every string maps to a unique int!)

13

Analyzing hash functions

In math: h(s) =
|s|−1∑
i=0

31i · si

In code:
int hashCode(str)

int accum = 1

int out = 0

for (char c : s.chars)

out += accum * c

accum *= 31

return out

Good idea: Uses both character values and positions.

Strikes good balance between efficiency and reducing collisions.

(Why use 31? People tried a bunch of different strategies, and this
one seemed to work well “in practice”)

14

Hash functions

So, what does a good hash function look like?
Using hash functions inside dictionaries: useful properties
A hash function that is intended to be used for a dictionary
should ideally have the following properties:

I Low collision rate:
The hash of two different inputs should usually be different.
We want to minimize collisions as much as possible.

I Uniform distribution of outputs:
In Java, there are 232 32-bit ints. So, the probability that the hash
function returns any individual int should be 1

232
.

I Low computational cost:
We will be computing the hash function a lot, so we need it to be
very easy to compute.

15

Client vs implementor

Who implements the hash function? The client, or the dictionary?

Client responsibilities

I Responsible for implementing a “good” hash function.
I The hash function avoids “wasting” information in the key or

the output bits while still being “fast”.

Dictionary/implementor responsibilities

I Responsible for calling the hash function
I Responsible for managing the internal array
I Responsible for keeping track of collisions

16

A Java interlude...

So, how does this work in Java?

Every object has a default equals and hashCode implementation.
Override these two methods.
Important invariants
When implementing hashCode, you MUST respect these
invariants!

I IF you implement hashCode(...),
THEN you MUST also implement equals(...)

I IF a.equals(b),
THEN you MUST make sure that a.hashCode() ==

b.hashCode()

17

Handling multiple fields

What if an object has multiple fields?

General considerations:

I Trade-off: hashing time vs collision avoidance
I Are some fields redundant? Do you need to hash all of them?

Tips for creating hashes

I Use all 32 bits (including negative numbers!)
I Use different overlapping bits for different parts of the hash
I If keys are known ahead of time, choose a perfect hash
I Use expertise of others: consult books, have your IDE

auto-generate a hash function...

18

Handling collisions

Insight:
The majority of our time is spent handling collisions

Our strategy so far:

I Design a good hash function to minimize chance of collision
I If we do have a collision, store both in a “bucket”

Are there other strategies for storing collisions?

Yes: something called open addressing

19

Open addressing

Open addressing
Open addressing is a kind of collision resolution strategy that
resolves collisions by chosing a different location when the
natural choice is full.

20

Open addressing: linear probing

Exercise: assume internal capacity of 10, insert the following keys:

1, 5, 11, 7, 12, 17, 6, 25

0

1

1

11

2

12

3 4

5

5

6

6

7

7

17

8

25

9

21

Open addressing: linear probing

Strategy: Linear probing

If we collide, checking each next element until we find an open slot.

So, h′(k, i) = (h(k) + i) mod T , where T is the table size

i = 0

while (index in use)

try (hash(key) + i) % array.length

i += 1

22

