Warmup

1. Construct a mathematical formula $T(x)$ modeling the worst-case runtime of this method.

$$T(x) = \begin{cases}
 1 & \text{if } x \leq 10 \\
 x + T(x-1) + T(x-2) & \text{otherwise}
\end{cases}$$

2. Construct a mathematical formula $M(x)$ modeling the integer output of this method.

$$M(x) = \begin{cases}
 5 & \text{if } x \leq 10 \\
 x^2 + 2T(x-1) + 3T(x-2) & \text{otherwise}
\end{cases}$$
Implementing IntegerDictionary

Step 2:
Implement a dictionary that accepts any integer key.

Idea 1: Create a giant array that has one space for every integer.

What’s the problem?

► Can we even allocate an array that big?
► Potentially very wasteful: what if our data is sparse?
 This is also a problem with our FinitePositiveIntegerDictionary!

Idea 2: Create a smaller array, and mod the key by array length.
So, instead of looking at this.array[key], we look at this.array[key % this.array.length].

A brief interlude on mod:

The "modulus" (mod) operation
In math, "a mod b" is the remainder of a divided by b.*
Both a and b MUST be integers.
In Java, we write this as a % b.

*This is a slight over-simplification

Examples (in Java syntax)

► 28 % 5 == 3
► 427 % 100 == 27
► 8 % 8 == 0
► 2 % 8 == 2

Useful when you want “wrap-around” behavior, or want an integer to stay within a certain range.

Implementing IntegerDictionary: resolving collisions

The problem: collisions
Suppose the array has length 10 and we insert the key-value pairs (8, “foo”) and (18, “bar”). What does the dictionary look like?

There are several different ways of resolving collisions. We will study one technique today called separate chaining.

Idea: Instead of storing key-value pairs at each array location, store a “chain” or “bucket” that can store multiple keys!
Implementing IntegerDictionary

Two questions:
1. What ADT should we use for the bucket? A dictionary!
2. What’s the worst-case runtime of our dictionary, assuming we implement the bucket using a linked list? \(\Theta(n) \) – what if everything gets stored in the same bucket?

Implementing IntegerDictionary: analyzing runtime

The worst-case runtime is \(\Theta(n) \). Assuming the keys are random, what’s the average-case runtime?
Depends on the average number of elements per bucket!

The “load factor” \(\lambda \)
Let \(n \) be the total number of key-value pairs.
Let \(c \) be the capacity of the internal array.
The “load factor” \(\lambda \) is \(\lambda = \frac{n}{c} \).

Assuming we use a linked list for our bucket, the average runtime of our dictionary operations is \(\Theta(1 + \lambda)! \)

Implementing IntegerDictionary: improving performance

Goal: Improve the average runtime of our IntegerDictionary
Ideas:
► Right now, we can’t do anything about the keys we get.
► Can we modify the bucket somehow?
 Idea: use a self-balancing tree for the bucket. Worst-case runtime is now \(\Theta(\log(n)) \).
 Problem: constant factor is worse than a linked list; implementation is more complex.
► Can we modify the array’s internal capacity somehow?
 If the load factor is too high, resize the array!
Important: When separate chaining, we should keep \(\lambda \approx 1.0 \).

Implementing IntegerDictionary: improving performance

Once the load factor is large enough, we resize. There are two common strategies:
► Just double the size of the array
► Increase the array size to the next prime number that’s (roughly) double the array size

Three question:
1. How do you resize the array?
2. What’s the runtime of resizing?
3. Why use prime numbers?

So far...

So far...
1. Implement a finite, positive integer dictionary
2. Implement an integer dictionary
 ► How can we avoid using a lot of memory?
 ► How do we handle collisions?
 ► How do we keep the average performance \(\Theta(1) \)?
3. Implement a general-purpose dictionary

Implementing a general dictionary

Problem: We have an efficient dictionary, but only for integers. How do we handle arbitrary keys?

Idea: Wouldn’t it be neat if we could convert any key into an integer?

Solution: Use a hash function!
Hash functions

A hash function is a mapping from the key set U to an integer.

There are many different properties a hash function could have.

Using hash functions inside dictionaries: useful properties

A hash function that is intended to be used for a dictionary should ideally have the following properties:

▶ Uniform distribution of outputs:
In Java, there are 2^{32} 32-bit ints. So, the probability that the hash function returns any individual int should be $\frac{1}{2^{32}}$.

▶ Low collision rate:
The hash of two different inputs should usually be different. We want to minimize collisions as much as possible.

▶ Low computational cost:
We will be computing the hash function a lot, so we need it to be very easy to compute.

Exercise: hash function for strings

Analyze these hash function implementations.

► $h(s) = 1$

► $h(s) = \sum_{i=0}^{|s|-1} s_i$

► $h(s) = 2^{s_0} \cdot 3^{s_1} \cdot 5^{s_2} \cdot 7^{s_3} \cdots$

► $h(s) = \sum_{i=0}^{|s|-1} 31^{i} \cdot s_i$

Announcements

► Written HW 1 due Wed, Jan 24

► Project 2 will be released tonight
 ▶ Due Wed, Jan 31 at 11:30pm
 ▶ Partner selection form due Thursday, Jan 25
 ▶ Can work with same partner or a different one

► Midterm on Friday, Feb 2, in-class
 ▶ Review session time and locations TBD
 (but probably Mon 29 and Tues 30?)
 ▶ More details on Wednesday