
CSE 373: Hash functions and hash tables

Michael Lee
Monday, Jan 22, 2018

1

Warmup

Warmup: Consider the following method.
private int mystery(int x) {

if (x <= 10) {

return 5;

} else {

int foo = 0;

for (int i = 0; i < x; i++)

foo += x;

return foo + (2 * mystery(x - 1)) + (3 * mystery(x - 2));

}

}

With your neighbor, answer the following.

1. Construct a mathematical formula T (x) modeling the
worst-case runtime of this method.

2. Construct a mathematical formula M(x) modeling the integer
output of this method.

2

Warmup

1. Construct a mathematical formula T (x) modeling the
worst-case runtime of this method.

T (x) =

1 if x ≤ 10

x + T (x − 1) + T (x − 2) otherwise

2. Construct a mathematical formula M(x) modeling the
integer output of this method.

M(x) =

5 if x ≤ 10

x2 + 2T (x − 1) + 3T (x − 2) otherwise

3

Plan of attack

Today’s plan:
Goal: Learn how to implement a hash map

Plan of attack:

1. Implement a limited, but efficient dictionary
2. Gradually remove each limitation, adapting our original
3. Finish with an efficient and general-purpose dictionary

4

Implementing FinitePositiveIntegerDictionary

Step 1:
Implement a dictionary that accepts only integer keys between 0

and some k.

(This is also known as a “direct address map”.)

How would you implement get, put, and remove so they all work
in Θ(1) time?

Hint: first consider what underlying data structure(s) to use. An
array? Something using nodes? (E.g. a linked list or a tree).

5

Implementing FinitePositiveIntegerDictionary

Solution: Create and maintain an internal array of size k.
Map each key to the corresponding index in array:
public V get(int key) {

this.ensureIndexNotNull(key);

return this.array[key].value;

}

public void put(int key, V value) {

this.array[key] = new Pair<>(key, value);

}

public void remove(int key) {

this.ensureIndexNotNull(key);

this.array[key] = null;

}

private void ensureIndexNotNull(int index) {

if (this.array[index] == null) {

throw new NoSuchKeyException();

}

}

6

Implementing IntegerDictionary

Step 2:
Implement a dictionary that accepts any integer key.

Idea 1: Create a giant array that has one space for every integer.

What’s the problem?

I Can we even allocate an array that big?
I Potentially very wasteful: what if our data is sparse?

This is also a problem with our
FinitePositiveIntegerDictionary!

7

Implementing IntegerDictionary

Step 2:
Implement a dictionary that accepts any integer key.

Idea 2: Create a smaller array, and mod the key by array length.

So, instead of looking at this.array[key], we look at
this.array[key % this.array.length].

8

A brief interlude on mod:

The “modulus” (mod) operation
In math, “a mod b” is the remainder of a divided by b.*
Both a and b MUST be integers.

In Java, we write this as a % b.

*This is a slight over-simplification

Examples (in Java syntax)

I 28 % 5 == 3

I 427 % 100 == 27

I 8 % 8 == 0

I 2 % 8 == 2

Useful when you want “wrap-around” behavior, or want an integer
to stay within a certain range.

9

Implementing IntegerDictionary

Idea 2: Create a smaller array, and mod the key by array length.

public V get(int key) {

int newKey = key % this.array.length;

this.ensureIndexNotNull(newKey);

return this.array[newKey].value

}

public void put(int key, V value) {

this.array[key % this.array.length] = new Pair<>(key, value);

}

public void remove(int key) {

int newKey = key % this.array.length;

this.ensureIndexNotNull(newKey);

return this.array[newKey].value

}

What’s the bug here?

10

Implementing IntegerDictionary: resolving collisions

The problem: collisions

Suppose the array has length 10 and we insert the key-value pairs
(8, “foo”) and (18, “bar”). What does the dictionary look like?

11

Implementing IntegerDictionary: resolving collisions

There are several different ways of resolving collisions. We will
study one technique today called separate chaining.

Idea: Instead of storing key-value pairs at each array location,
store a “chain” or “bucket” that can store multiple keys!

12

Implementing IntegerDictionary

Two questions:

1. What ADT should we use for the bucket?
A dictionary!

2. What’s the worst-case runtime of our dictionary, assuming we
implement the bucket using a linked list?
Θ(n) – what if everything gets stored in the same bucket?

13

Implementing IntegerDictionary: analyzing runtime

The worst-case runtime is Θ(n). Assuming the keys are random,
what’s the average-case runtime?

Depends on the average number of elements per bucket!

The “load factor” λ

Let n be the total number of key-value pairs.
Let c be the capacity of the internal array.

The “load factor” λ is λ =
n
c .

Assuming we use a linked list for our bucket, the average runtime
of our dictionary operations is Θ(1 + λ)!

14

Implementing IntegerDictionary: improving performance

Goal: Improve the average runtime of our IntegerDictionary

Ideas:

I Right now, we can’t do anything about the keys we get.
I Can we modify the bucket somehow?

Idea: use a self-balancing tree for the bucket. Worst-case
runtime is now Θ(log(n)).
Problem: constant factor is worse then a linked list;
implementation is more complex.

I Can we modify the array’s internal capacity somehow?
If the load factor is too high, resize the array!

Important: When separate chaining, we should keep λ ≈ 1.0.

15

Implementing IntegerDictionary: improving performance

Once the load factor is large enough, we resize. There are two
common strategies:

I Just double the size of the array
I Increase the array size to the next prime number that’s

(roughly) double the array size

Three question:

1. How do you resize the array?
2. What’s the runtime of resizing?
3. Why use prime numbers?

16

So far...

So far...

1. Implement a finite, positive integer dictionary
2. Implement an integer dictionary

I How can we avoid using a lot of memory?
I How do we handle collisions?
I How do we keep the average performance Θ(1)?

3. Implement a general-purpose dictionary

17

Implementing a general dictionary

Problem: We have an efficient dictionary, but only for integers.
How do we handle arbitrary keys?

Idea: Wouldn’t it be neat if we could convert any key into an
integer?

Solution: Use a hash function!

18

Hash functions

Hash function
A hash function is a mapping from the key set U to an integer.

19

Hash functions

There are many different properties a hash function could have.
Using hash functions inside dictionaries: useful properties
A hash function that is intended to be used for a dictionary
should ideally have the following properties:

I Uniform distribution of outputs:
In Java, there are 232 32-bit ints. So, the probability that the hash
function returns any individual int should be 1

232
.

I Low collision rate:
The hash of two different inputs should usually be different.
We want to minimize collisions as much as possible.

I Low computational cost:
We will be computing the hash function a lot, so we need it to be
very easy to compute.

20

Exercise: hash function for strings

Analyze these hash function implementations.

I h(s) = 1

I h(s) =
|s|−1∑
i=0

si

I h(s) = 2s0 · 3s1 · 5s2 · 7s3 · · ·

I h(s) =
|s|−1∑
i=0

31i · si

21

Announcements

I Written HW 1 due Wed, Jan 24
I Project 2 will be released tonight

I Due Wed, Jan 31 at 11:30pm
I Partner selection form due Thursday, Jan 25
I Can work with same partner or a different one

I Midterm on Friday, Feb 2, in-class
I Review session time and locations TBD

(but probably Mon 29 and Tues 30?)
I More details on Wednesday

22

