CSE 373: Hash functions and hash tables

Michael Lee
Monday, Jan 22, 2018

Warmup

Warmuy

Consider the following method

With your neighbor, answer the following.

1. Construct a mathematical formula T (x) modeling the
worst-case runtime of this method

Construct a mathematical formula M(x) modeling the integer
output of this method

1. Construct a mathematical formula T (x) modeling the
worst-case runtime of this method.

1 if x <10
T =
X+ T(x—1)+T(x—2) otherwise

2. Construct a mathematical formula M(x) modeling the
integer output of this method

if x <10

X2 +2T(x—1)+3T(x—2) otherwise

Plan of attack

Today's plan

Goal: Learn how to implement a hash map

Plan of attack:

1. Implement a limited, but efficient dictionary
2. Gradually remove each limitation, adapting our original

3. Finish with an efficient and general-purpose dictionary

Implementing FinitePositiveIntegerDictionary

Step 1:

Implement a dictionary that accepts only integer keys between 0
and some k

(This is also known as a “direct address map”)

How would you implement get, put, and remove so they all work
in ©(1) time?

Hint: first consider what underlying data structure(s) to use. An
array? Something using nodes? (E.g. a linked list or a tree)

Implementing FinitePositiveIntegerDictionary

Solution: Create and maintain an internal array of size k

Map each key to the corresponding index in array:

public ¥ geCint key)
n ey
return this.arras ey

public void put(int key, ¥ value:
this.arroyTkey) - new Paireshey, value)

public void renoveint key)
this )
this arrayTkey] = mll,

private vold ensurelndextothull it index) (
1 Cehts arrayCindox) == mull
throe new NoSucrKeyException()




Implementing IntegerDictionary Implementing IntegerDictionary

Step

Implement a dictionary that accepts any integer key.

Step 2:
Idea 1: Create a giant array that has one space for every integer
Implement a dictionary that accepts any integer ke
What's the problem? B o R S
> Can we even allocate an array that big?

Idea 2: Create a smaller array, and mod the key by array length
> Potentially very wasteful: what if our data is sparse?

This is also a problem with our
FinitePositivelntegerDictionary!

So, instead of looking at this.arraylkey], we look at
this.array[key % this.array.lengthl.

A brief interlude on mo mplementing IntegerDictionary
The “modulus” (mod) operation

In math, “a mod b" is the remainder of a divided by b.*
Both 2 and b MUST be integers.

Idea 2: Create a smaller array, and mod the key by array length.
pulic ¥ gescint kep) ¢
In Java, we write this as a % b, ot (ewtay):

*This s a slight over-simplificaion
public vold putint key, V value)
Examples (in Java syntax) this.arroy ey 5 this. ) = new Pasro>(hey, value)

public void renoveint key)
int neskey = key * this

Useful when you want “wrap-around” behavior, or want an integer What's the bug here?
t0 stay within a certain range

Implementing IntegerDictionary: resolving collisions Implementing IntegerDictionary: resolving collisions

The problem: colli

ions

There are several different ways of resolving collisions. We will

study one technique today called separate chaining.
Suppose the array has length 10 and we insert the key-value pairs

Idea: Instead of storing key-value pairs at each array location,
(8,"f00") and (18, “bar"). What does the dictionary look like? © Bl o 5
store a “chain” or “bucket” that can store multiple keys!




Implementing IntegerDictionary

Two questions:

1. What ADT should we use for the bucket?
A dictionary!

2. What's the worst-case runtime of our dictionary, assuming we
implement the bucket using a linked list?
© (n) - what if everything gets stored in the same bucket?

Implementing IntegerDictionary: analyzing runtime

The worst-case runtime is © (n). Assuming the keys are random,
what's the average-case runtime?

Depends on the average number of elements per bucket!

The

load factor” A
Let 1 be the total number of key-value pairs.
Let ¢ be the capacity of the internal array.

The “load factor” A is A =

c

Assuming we use a linked list for our bucket, the average runtime
of our dictionary operations is © (1 + A)!

Implementing IntegerDictionary: improving performance

Goal: Improve the average runtime of our IntegerDictionary
Idea:

> Right now, we can't do anything about the keys we get.
> Can we modify the bucket somehow?

Idea: use a self-balancing tree for the bucket. Worst-case
runtime is now © (log(n))

Problem: constant factor is worse then a linked list;
implementation is more complex.
> Can we modify the array's internal capacity somehow?

If the load factor is too high, resize the array!

Important: When separate chaining, we should keep A = 1.0.

Implementing IntegerDictionary: improving performance

Once the load factor is large enough, we resize. There are two
common strategies
> Just double the size of the array
> Increase the array size to the next prime number that's
(roughly) double the array size

Three question

1. How do you resize the array?
2. What's the runtime of resizing?

3. Why use prime numbers?

So far.

1. Implement a finite, positive integer dictionary
2. Implement an integer dictionary
> How can we avoid using 2 lot of memory?
> How do we handle collsions?
> How do we keep the average performance ©) (1)7

3. Implement a general-purpose dictionary

nting a general

Problem: We have an efficient dictionary, but only for integers
How do we handle arbitrary keys?

Idea: Wouldn't it be neat if we could convert any key into an
integer?

Solution: Use a hash function!




Hash functions Hash functions

There are many different properties a hash function could have
Using hash functions inside dictionaries: useful properties
. A hash function that i intended to be used for a dictionary
Hash function

should ideally have the following propertes:
A hash function is a mapping from the key set U to an integer. 4 & o

» Uniform distribution of outputs:

In Java, there are 2°% 32:bit ints. So, the probabilty that the hash
i

function returns any individual int should be

> Low collision rate:
“The hash of two different inputs should usually be different.
We want to minimize callisions s much as possible
> Low computational cost:
We will be computing the hash function a lot, so we need it to be
very easy to compute.

Exercise: hash function for strings Announcements

Analyze these hash function implementations.
> h(s)=1
> Written HW 1 due Wed, Jan 24
> Project 2 will be released tonight
> )= s > Due Wed, Jan 31 at 11:30pm
= > Partner selection form due Thursday, Jan 25
> Can work with same partner or a different one

7 > Midterm on Friday, Feb 2, in-class

> Review session time and locations TBD
" (but probably Mon 29 and Tues 307)
> o)=Y 3l > More details on Wednesday




