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Warmup

public static void mystery(int n) {

if (n <= 4) {

System.out.println("Hello");

} else {

mystery(n - 1);

for (int i = 0; i < n; i++)

System.out.println("World");

mystery(n - 2);

}

}

With your neighbor, answer the following questions:

1. How much work is done JUST within the base case?
2. Within the recursive case, how much work do we do

IGNORING the recursive calls?
3. How much work does each recursive call make, in terms of

T (...) and n?
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Now, fill in the gaps to construct your recurrence:

T (n) =

workDoneInBaseCase When n is...

nonrecursiveWork + recursiveWork Otherwise

Answer:

T (n) =

1 When n ≤ 4

n + T (n − 1) + T (n − 2) Otherwise 3

Announcements

I CSE 373 section AD has been changed to THO 125
I Project 2 due tonight

PSA: After uploading to Canvas, double-check and make sure
you’ve submitted the correct files.

I Written homework 1 will be released tonight; due in a week.
(Reminder: work on this solo)

I Everybody gets an extra late day.
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Last time...

Observation: sometimes, keys are comparable and sortable.

Idea: Can we exploit the “sortability” of these keys?

Suppose we add the following invariant to ArrayDictionary:

SortedArrayDictionary invariant
The internal array, at all times, must remain sorted.

How do you implement get? What’s the big-Θ bound?
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The binary search algorithm

Core algorithm (in pseudocode):
public V get(K key):

return search(key, 0, this.size)

private K search(K key, int lowIndex, int highIndex):

if lowIndex > highIndex:

key not found, throw an exception

else:

middleIndex = average of lowIndex and highIndex

pair = this.array[middleIndex]

if pair.key == key:

return pair.value

else if pair.key < key:

return search(key, lowIndex, middleIndex)

else if pair.key > key:

return search(key, middleIndex + 1, highIndex)

Answer: T (n) ≈

1 When n ≤ 0

c + T
(⌊n

2

⌋)
Otherwise

6



Finding a closed form

Our answer: T (n) ≈

1 When n ≤ 0

c + T
(⌊n

2

⌋)
Otherwise

Question: how do we find a closed form? Try unfolding?

T (n) = c + (c + (c + . . .+ (c + 1))) = c + c + . . .+ c︸ ︷︷ ︸
t=Num times

+1

n 0 1 2 4 6 8 10 12 16 ... 32 ... 64

t 0 1 2 3 3 4 4 4 5 ... 6 ... 7

What’s the relationship? n ≈ 2t+1

Solve for t: t ≈ log2(n)− 1

Final model: T (n) ≈ c(log2(n)− 1) + 1

So, we conclude: T (n) ∈ Θ(log2(n))
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The punchline

The punchline:
Binary search takes about Θ(log(n)) time, where n is the initial
size of the array.

Note: in computer science, we assume log(n) = log2(n).
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SortedArrayDictionary

Fill in the remainder of this table for SortedArrayDictionary:

Operation Description of algorithm Big-Θ bound

get Use binary search. Θ(log(n))
put Use binary search to find key.

If it doesn’t exist, insert into array.
Θ(n)

remove Use binary search to find key.
Once found, remove it and shift over
remaining elements.

Θ(n)

containsKey Use binary search. Θ(log(n))
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Idea: Moving away from lists

Observation: Changing our array is still difficult

Idea: Use a different data structure optimized for both searching
and insertion?

Answer: Use a Binary Search Tree (BST)
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Formal definition of trees

Example of a tree:

A tree consists of nodes where each node has at most one parent
and zero or more children. Every single node (except one) must
have a parent.
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Some definitions

Some definitions:

I Root node: The (single) node with no parent – the “top” of
the tree

I Branch node: A node with one or more children
I Leaf node: A node with no children
I Edge: A pointer from one node to another
I A subtree: A node and all of its descendants
I Height: The number of edges contained in the longest path

from the root node to some leaf node
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Height of a tree

Height of a tree
The height of a tree is the number of edges contained in the
longest path from the root node to some leaf node.

What are the heights of these trees?
root

root root

(null)
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Binary Search Trees

Example of a binary SEARCH tree (BST):
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A binary SEARCH tree contains comparable items such that for
every node, all children to the left have smaller keys and all
children to the right have larger keys.
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Binary Search Tree vs Binary Tree

Important:

Binary Search Tree (BST) 6= Binary Tree

15

Implementing the dictionary interface

Question: how do we implement the dictionary operations?

What are their runtimes with respect to n (number of nodes in the
tree) and/or h (height of the tree)?
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Binary Search Trees

What is h, in terms of n?

For “balanced” trees, h ≈ logc(n), where c is the maximum
number of children a node can have.

So for “balanced” trees, our dictionary operations are all in
Θ(log(n)).
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Binary Search Trees

Is this a valid binary tree? A valid binary search tree?
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Yes. We call this a degenerate tree. What is h now?

For “degenerate” trees, h ≈ n.

18



BinarySearchTreeDictionary

Fill in the remainder of this table for BinarySearchTreeDictionary:

Operation Description of algorithm Big-Θ
bound

get Recursively traverse down left or right
child until we find the correct node.

Θ(h)

put Recursively search for node. If it doesn’t
exist, keep recursing until we hit an
empty spot and add a new node.

Θ(h)

remove Recursively find node to remove. Once
found, replace it with the largest node
in the left subtree (or the smallest node
in the right subtree).

Θ(h)

containsKey Do a recursive search. Θ(h)
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A question

Core issue:
All BST operations take O (h) time, where h can be anywhere
from log(n) to n, depending on the shape of the tree!

Question:
Is there some way we can make h always equal about log(n)?

Can we somehow modify a BST so it always stays “balanced”?
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AVL Trees: Invariants

Core idea: add extra invariant to BSTs that enforce balance.

AVL Tree Invariants
An AVL tree has the following invariants:

I The “structure” invariant:
All nodes have 0, 1, or 2 children.

I The “BST” invariant:
For all nodes, all keys in the left subtree are smaller;
all keys in the right subtree are larger

I The “balance” invariant:
For all nodes, abs (height (left))− height (height (right)) ≤ 1.

AVL = Adelson-Velsky and Landis 21

Interlude: Exploring the balance invariant

Question: why abs (height (left))− height (height (right)) ≤ 1?

Why not height (left) = height (right)?

What happens if we insert two elements. What happens?
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AVL tree invariants review

Question: is this a valid AVL tree?
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