Warmup questions

Definition: Dominated by

A function \(f(n) \) is dominated by \(g(n) \) when...

- There exists two constants \(c > 0 \) and \(n_0 > 0 \)...
- Such that for all values of \(n \geq n_0 \)...
- \(f(n) \leq c \cdot g(n) \) is true

Definition: Big-O

\(\mathcal{O}(f(n)) \) is the “family” or “set” of all functions that are dominated by \(f(n) \)

Definitions: Dominates

\(f(n) \in \mathcal{O}(g(n)) \) is like saying “\(f(n) \) is less than or equal to \(g(n) \)”.

Is there a way to say “greater than or equal to”? Yes!

Definition: Dominates

We say \(f(n) \) dominates \(g(n) \) when:

- There exists two constants \(c > 0 \) and \(n_0 > 0 \)...
- Such that for all values of \(n \geq n_0 \)...
- \(f(n) \geq c \cdot g(n) \) is true

Definition: Big-\(\Omega \)

\(\Omega(f(n)) \) is the family of all functions that dominates \(f(n) \).

A few more questions...

True or false?

- \(4n^2 \in \Omega(1) \)
- \(4n^2 \in \Omega(n) \)
- \(4n^2 \in \Omega(n^2) \)
- \(4n^2 \in \Omega(n^3) \)
- \(4n^2 \in \Omega(n^4) \)
- \(4n^2 \in \mathcal{O}(1) \)
- \(4n^2 \in \mathcal{O}(n) \)
- \(4n^2 \in \mathcal{O}(n^2) \)
- \(4n^2 \in \mathcal{O}(n^3) \)
- \(4n^2 \in \mathcal{O}(n^4) \)

Definition: Big-\(\Theta \)

We say \(f(n) \in \Theta(g(n)) \) when both:

- \(f(n) \in \mathcal{O}(g(n)) \) and...
- \(f(n) \in \Omega(g(n)) \)

...are true.

Note: in industry, it’s common for many people to ask for the big-\(\mathcal{O} \) when they really want the big-\(\Theta \)!
Modeling complex loops

Exercise: construct a mathematical function modeling the worst-case runtime in terms of \(n \).
Assume the println takes \(c \) time.

```java
for (int i = 0; i < n; i++) {
    for (int j = 0; j < i; j++) {
        System.out.println("Foo!");
    }
}
```

A handwavy answer: \(T(n) = 0c + 1c + 2c + 3c + \ldots + (n-1)c \)
A not-handwavy answer: \(T(n) = \sum_{i=0}^{n-1} \sum_{j=0}^{i-1} c \)

Simplifying summations

Strategies:
- Wolfram Alpha
- Apply summation identities

Model: Let \(n \) be the array length. Then, \(T(n) = \sum_{i=0}^{n-1} \sum_{j=0}^{i-1} c \)

Simplifying summations continued

\[
T(n) = \sum_{i=0}^{n-1} \sum_{j=0}^{i-1} c = \sum_{i=0}^{n-1} \sum_{j=0}^{i-1} c = \frac{n(n-1)}{2} \quad \text{Gauss's identity}
\]
So, \(T(n) = \sum_{i=0}^{n-1} \sum_{j=0}^{i-1} c = \frac{c}{2} n^2 - \frac{c}{2} n \) closed form

Handling recursive functions

Exercise: model the worst-case runtime of this method.

```java
public static int sum(int[] arr) { 
    return sumHelper(0, arr.length, arr);
}

private static int sumHelper(int curr, int arrLength, int[] arr) { 
    if (curr == arrLength) {
        return 0;
    } else {
        return arr[curr] + sumHelper(curr + 1);
    }
}
```

Answer: create a recurrence:

\[
T(n) = \begin{cases}
 c_1 & \text{when } n = 0 \\
 c_2 + T(n-1) & \text{otherwise}
\end{cases}
\]

Note: here, \(n \) is the number of items we need to visit, and \(c_1 \) and \(c_2 \) are some constants.

Simplifying recurrences

How do we find a closed form for:

\[
T(n) = \begin{cases}
 c_1 & \text{when } n = 0 \\
 c_2 + T(n-1) & \text{otherwise}
\end{cases}
\]

One method: the “unfolding” method.
Observation: when \(n = 4 \), \(T(n) = c_1 + (c_2 + (c_2 + (c_2 + c_1))) \)
We repeat \(c_2 \) four times, so \(T(4) = 4c_2 + c_1 \).
After generalizing: \(T(n) = c_1 + \sum_{i=0}^{n-1} c_2 = c_1 + c_2n \).
The Dictionary ADT

A dictionary contains a bunch of key-value pairs. Every key is unique (no duplicate keys allowed); the values can be arbitrary. A client can provide a key to look up the corresponding value.

Supported operations:
- **get**: Retrieves the value corresponding to the given key
- **put**: Updates the value corresponding to the given key
- **remove**: Removes the given key (and corresponding value)
- **containsKey**: Returns whether dictionary contains given key
- **size**: Returns the number of key-value pairs

Alternative names: map, lookup table

The Set ADT

A set is a collection of items. A set cannot contain any duplicate items: each item must be unique.

Supported operations:
- **add**: Adds the given item to the set
- **remove**: Removes the given item from the set
- **contains**: Returns 'true' if the set contains this item
- **size**: Returns the number of items in the set

Two questions:
1. Do sets (and dictionaries) need to 'order' items in some way?
2. We can implement a set on top of some dictionary: how?

Algorithm design practice: ArrayDictionary

Ex: consider your ArrayDictionary implementation; fill in table:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Description of algorithm</th>
<th>Big-Θ bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>get</td>
<td>Scan through the internal array, see if the key exists. Return value if it does.</td>
<td>Θ (n)</td>
</tr>
<tr>
<td>put</td>
<td>Scan through the internal array, replace the value if we find the key-value pair. Otherwise, add the new pair at the end.</td>
<td>Θ (n)</td>
</tr>
<tr>
<td>remove</td>
<td>Scan through the internal array and find the key-value pair. Remove it, and shift over the remaining elements.</td>
<td>Θ (n)</td>
</tr>
<tr>
<td>containsKey</td>
<td>Scan through the array...</td>
<td>Θ (n)</td>
</tr>
</tbody>
</table>

Idea: exploit additional property of keys

Observation: sometimes, keys are comparable and sortable.

Idea: Can we exploit the "sortability" of these keys?

Design practice: implementing get

Suppose we add the following invariant to ArrayDictionary:

SortedArrayDictionary invariant

The internal array, at all times, must remain sorted.

How do you implement get? What's the big-Θ bound?

The binary search algorithm

Core algorithm (in pseudocode):

```java
public V get(K key):
    return search(key, 0, this.size)

private K search(K key, int lowIndex, int highIndex):
    if lowIndex > highIndex:
        throw an exception
    else:
        middleIndex = average of lowIndex and highIndex
        pair = this.array[middleIndex]
        if pair.key == key:
            return pair.value
        else if pair.key < key:
            return search(key, lowIndex, middleIndex)
        else if pair.key > key:
            return search(key, middleIndex + 1, highIndex)
```

Ex: model the worst-case runtime. Assume the time needed to compare two keys takes c time. Let $n = \text{highIndex} - \text{lowIndex}$.

Finding a closed form

Our answer: \(T(n) \approx \begin{cases} 1 & \text{When } n \leq 0 \\ c + \frac{T(n)}{2} & \text{Otherwise} \end{cases} \)

Question: how do we find a closed form? Try unfolding?

\[T(n) = c + (c + (c + \ldots + (c + 1))) = c + c + \ldots + c + 1 \]

\(t = \text{Num times} \)

| \(n \) | 0 | 2 | 4 | 8 | 10 | 12 | 16 | \ldots | 32 | \ldots | 64 |
|---|---|---|---|---|----|----|----|---|----|---|
| \(t \) | 0 | 2 | 3 | 4 | 4 | 5 | 6 | \ldots | 6 | \ldots | 7 |

What’s the relationship? \(n \approx 2^{t+1} \)

Solve for \(t \): \(t \approx \log(n) - 1 \)

Final model: \(T(n) \approx c(\log(n) - 1) + 1 \)

So, we conclude: \(T(n) \in \Theta(\log(n)) \)

SortedArrayDictionary

Fill in the remainder of this table for SortedArrayDictionary:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Description of algorithm</th>
<th>Big-(\Theta) bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>get</td>
<td>Use binary search.</td>
<td>(\Theta(\log(n)))</td>
</tr>
<tr>
<td>put</td>
<td>Use binary search to find key. If it doesn’t exist, insert into array.</td>
<td>(\Theta(n))</td>
</tr>
<tr>
<td>remove</td>
<td>Use binary search to find key. Once found, remove it and shift over remaining elements.</td>
<td>(\Theta(n))</td>
</tr>
<tr>
<td>containsKey</td>
<td>Use binary search.</td>
<td>(\Theta(\log(n)))</td>
</tr>
</tbody>
</table>