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Warmup

Warmup questions:
Instructions:

I Recall: What’s an ADT? What’s a data structure? An
implementation of a data structure?

I Skim the Queue ADT on your handout.
I Discuss: How would you implement a queue?
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Possible queue implementations
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Announcements

Course overload link: goo.gl/BDaAyt

Other announcements:

I Overloading + looking for a partner? Talk to me after class.
I Project 1 out
I Important: get project setup done ASAP

Setup tips and tricks:

I Suspect the spec is out-of-date? Shift-refresh in your browser
I Use Java 8, not 9
I When running into weird Eclipse issues, try restarting it
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Reviewing CSE 143 material

Places to get practice

I Section 1 handouts
I Practice-it: https://practiceit.cs.washington.edu
I CSE 143 class website (17au or older)
I Project 1

Need help? Visit office hours!
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ADTs

ADTs are just a tool for communicating with other programmers

This course focuses on implementing ADTs: implementing data
structures
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Why?

Why?
Why can’t we just use java.util.*?
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Why?

The dream: there’s One Right Way to implement each ADT

The reality: nothing’s perfect

But we can work around many tradeoffs by carefully adapting data
structures and abstracting algorithms!
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Tradeoffs

There are (often highly non-obvious) ways to organize information
to enable efficient computations over data.

However, no method is perfect: there exists unavoidable tradeoffs.
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Tradeoffs

Examples of tradeoffs:

I Time vs space
I Making one operation more efficient vs another
I Implementing extra behavior vs performance
I Simplicity and debuggability vs performance

Core questions:

I What operations do I really need?
I What assumptions am I making about how my software will

be used? (e.g. more lookups or inserts)
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Case study: The List ADT

A list stores an ordered sequence of information.

You can access each item by index.

A list is growable: you can add more and more elements to it.

It should support the following operations:

I get: returns the item at the i-th index
I set: sets the item at the i-th index to a given value
I append: add an item to the end of the list
I insert: insert an item at the i-th index
I delete: delete the item at the i-th index
I size: return the number of elements in the stack
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Tradeoffs

Goal: implement the List ADT
Compare and contrast: array list vs linked list

I Time needed to access i-th element

I Array list: immediate (constant time)
I Linked list: must iterate to find i-th node

I Time needed to insert at i-th element

I Array list: must shift elements
I Linked list: must iterate to i-th node

I Amount of space used overall:

I Array list: Potentially wastes space (after doubling)
I Linked list: No wasted space

I Amount of space used per element:

I Array list: No wasted space
I Linked list: Slightly more space per element
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A question:

How do we print out all the elements inside of a list?

One idea:

for (int i = 0; i < myList.size(); i++) {

System.out.println(myList.get(i));

}

How efficient is this if myList is an array list? A linked list?
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A problem:

We want to make linked list iteration fast. How?

Idea!

I Adapt the list ADT
I Abstract the idea of iteration
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A solution?

Iterator<String> iter = myList.iterator();

while (iter.hasNext()) {

String item = iter.next();

System.out.println(item);

}
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Case study: The List ADT

A list stores an ordered sequence of information.
You can access each item by index.
A list is growable: you can add more and more elements to it.

It should support the following operations:

I get: returns the item at the i-th index
I set: sets the item at the i-th index to a given value
I append: add an item to the end of the list
I insert: insert an item at the i-th index
I delete: delete the item at the i-th index
I size: return the number of elements in the stack

I iterator: returns an iterator over the list
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The Iterator ADT

An iterator “wraps” some sequence.

It yields each subsequent element one by one on request.

An iterator “remembers” what it needs to yield next.

Supported operations:

I hasNext: returns ‘true’ if there’s another element left to yield
and false otherwise

I next: returns the next element (if there is one)
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Implementing an iterator: A plan of attack
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Next time...

What is this ‘efficiency’ thing anyways?
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Parting thoughts

Reminder: Overloading/partner concerns, talk to me after class

Supplemental resources: see resources page on class website for...

I Strategies on effectively testing code
I Info on JUnit
I Math review (logs, exponents, summations)

Have suggestions for more resources docs we should write?
Use feedback form.

20


