
CSE 373: Introduction, ADTs, Design
Decisions, Generics

Michael Lee
Wednesday Jan 3, 2017

1



Overview

I Michael Lee (mlee42@cs.washington.edu)
I Currently working on a master’s degree in Computer Science
I Supervised by Adam Blank

I Office hours (CSE 216)
I Tuedays from 1:30 to 3:30
I Fridays from 4:30 to 6:30
I Or by appointment

2



Agenda

1. About this course
2. Data structures vs abstract data types (ADTs)
3. Generics
4. Administrivia

3



What are data structures and algorithms?

Data structure: a way of organizing and storing data

Algorithm: a series of precise instructions used to perform a task

4



What are data structures and algorithms?

Data structures store data

Algorithms do things

5



CSE 143

Basic techniques for storing and manipulating data

I “Expanding arrays”
I Nodes and pointers/references
I Trees and recursion

How to use pre-made data structures

I Using standard Java collections
I (Lists, Stacks, Queues, Sets, Maps...)

Techniques for organizing code

I Refactoring, coding style
I Client vs implementer

6



CSE 143

Basic techniques for storing and manipulating data

I “Expanding arrays”
I Nodes and pointers/references
I Trees and recursion

How to use pre-made data structures

I Using standard Java collections
I (Lists, Stacks, Queues, Sets, Maps...)

Techniques for organizing code

I Refactoring, coding style
I Client vs implementer

6



CSE 143

Basic techniques for storing and manipulating data

I “Expanding arrays”
I Nodes and pointers/references
I Trees and recursion

How to use pre-made data structures

I Using standard Java collections
I (Lists, Stacks, Queues, Sets, Maps...)

Techniques for organizing code

I Refactoring, coding style
I Client vs implementer

6



CSE 373

Content

I Learn new techniques
I Learn how exactly data structures work
I How to precisely analyze algorithms

Core skills

I Design decisions, tradeoffs, and critical thinking
I Abstraction and implemention
I Communication: being able to justify your decisions

Incidental skills

I Debugging and testing
I Exposure to tools used in industry

7



CSE 373

Content

I Learn new techniques
I Learn how exactly data structures work
I How to precisely analyze algorithms

Core skills

I Design decisions, tradeoffs, and critical thinking
I Abstraction and implemention
I Communication: being able to justify your decisions

Incidental skills

I Debugging and testing
I Exposure to tools used in industry

7



CSE 373

Content

I Learn new techniques
I Learn how exactly data structures work
I How to precisely analyze algorithms

Core skills

I Design decisions, tradeoffs, and critical thinking
I Abstraction and implemention
I Communication: being able to justify your decisions

Incidental skills

I Debugging and testing
I Exposure to tools used in industry

7



Course roadmap

I Week 1: Review of lists, stacks, and queues; misc Java tidbits
I Week 2: How to (precisely!) analyze code
I Week 3-5: Dictionaries (aka Maps) and Sets
I Week 6: Divide and conquer, sorting
I Week 7-9: Graphs and graph algorithms
I Week 10: Other interesting material

8



Definitions

Abstract Data Type (ADT)
A (mathematical) description of a ”thing” with a set of
supported operations and how they ought to behave

9



Definitions

Abstract Data Type (ADT)
A (mathematical) description of a ”thing” with a set of
supported operations and how they ought to behave

9



What is a Stack?

A stack stores information in first-in, last-out order
(like a deck of cards!)

It should support the following operations:

I push:

add an item to the top of the stack

I peek:

return (w/o removing) the top of the stack (if not empty)

I pop:

remove and return the top of the stack (if not empty)

I size:

return the number of elements in the stack

This is the Stack ADT.

10



What is a Stack?

A stack stores information in first-in, last-out order
(like a deck of cards!)

It should support the following operations:

I push:

add an item to the top of the stack

I peek:

return (w/o removing) the top of the stack (if not empty)

I pop:

remove and return the top of the stack (if not empty)

I size:

return the number of elements in the stack

This is the Stack ADT.

10



What is a Stack?

A stack stores information in first-in, last-out order
(like a deck of cards!)

It should support the following operations:

I push: add an item to the top of the stack
I peek: return (w/o removing) the top of the stack (if not empty)
I pop: remove and return the top of the stack (if not empty)
I size: return the number of elements in the stack

This is the Stack ADT.

10



What is a Stack?

A stack stores information in first-in, last-out order
(like a deck of cards!)

It should support the following operations:

I push: add an item to the top of the stack
I peek: return (w/o removing) the top of the stack (if not empty)
I pop: remove and return the top of the stack (if not empty)
I size: return the number of elements in the stack

This is the Stack ADT.

10



Definitions

Data structure
A specific way of organizing data and an associated family of
algorithms that are used to implement an ADT

11



How do we implement a stack?

I Internal data a stack needs to keep track of:

I items: An array containing our data
I numItems: An int containing the number of items in the stack

I Algorithms:
I push:

If numItems == items.length, create a new array
double the length, copy all elements over, and store the new
array. Add the new item at the numItems-th index and increase
numItems by one

I peek:

If numItems == 0, crash. Otherwise, return the item at
the numItems-th index.

I pop:

Call peek and get the item to return. Decrease numItems

by one.

I size:

Return numItems

This is the ArrayStack data structure. An ArrayStack
implements the Stack ADT.

12



How do we implement a stack?

I Internal data a stack needs to keep track of:

I items: An array containing our data
I numItems: An int containing the number of items in the stack

I Algorithms:
I push:

If numItems == items.length, create a new array
double the length, copy all elements over, and store the new
array. Add the new item at the numItems-th index and increase
numItems by one

I peek:

If numItems == 0, crash. Otherwise, return the item at
the numItems-th index.

I pop:

Call peek and get the item to return. Decrease numItems

by one.

I size:

Return numItems

This is the ArrayStack data structure. An ArrayStack
implements the Stack ADT.

12



How do we implement a stack?

I Internal data a stack needs to keep track of:
I items: An array containing our data
I numItems: An int containing the number of items in the stack

I Algorithms:
I push: If numItems == items.length, create a new array

double the length, copy all elements over, and store the new
array. Add the new item at the numItems-th index and increase
numItems by one

I peek: If numItems == 0, crash. Otherwise, return the item at
the numItems-th index.

I pop: Call peek and get the item to return. Decrease numItems

by one.
I size: Return numItems

This is the ArrayStack data structure. An ArrayStack
implements the Stack ADT.

12



How do we implement a stack?

I Internal data a stack needs to keep track of:
I items: An array containing our data
I numItems: An int containing the number of items in the stack

I Algorithms:
I push: If numItems == items.length, create a new array

double the length, copy all elements over, and store the new
array. Add the new item at the numItems-th index and increase
numItems by one

I peek: If numItems == 0, crash. Otherwise, return the item at
the numItems-th index.

I pop: Call peek and get the item to return. Decrease numItems

by one.
I size: Return numItems

This is the ArrayStack data structure. An ArrayStack
implements the Stack ADT. 12



Definitions

Implementation of a data structure
Is a specific implementation in a specific language

AKA a concrete data structure (CSE 373-specific term)

13



How do we implement a stack in Java?

public class ArrayStack<T> {

private T[] items;

private int numItems;

// Constructor omitted for space

public void push(T item) {

if (this.numItems == this.items.length) {

T[] newItems = new T[this.items.length * 2];

this.copyTo(this.items, newItems, this.items.length);

this.items = newItems;

}

this.items[this.numItems] = item;

this.numItems += 1;

}

private void copyTo(T[] src, T[] dst, int amount) {

for (int i = 0; i < amount; i++) {

dst[i] = src[i];

}

}

14



How do we implement a stack in Java?

public class ArrayStack<T> {

private T[] items;

private int numItems;

// Constructor omitted for space

public void push(T item) {

if (this.numItems == this.items.length) {

T[] newItems = new T[this.items.length * 2];

this.copyTo(this.items, newItems, this.items.length);

this.items = newItems;

}

this.items[this.numItems] = item;

this.numItems += 1;

}

private void copyTo(T[] src, T[] dst, int amount) {

for (int i = 0; i < amount; i++) {

dst[i] = src[i];

}

}

14



How do we implement a stack in Java?

public T peek() {

if (this.numItems == 0) {

throw new IllegalStateException();

}

return this.items[this.numItems];

}

public T pop() {

T out = this.peek();

this.numItems -= 1;

return out;

}

public int size() {

return this.numItems;

}

}

This is a concrete implementation of ArrayStack in Java.

15



How do we implement a stack in Java?

public T peek() {

if (this.numItems == 0) {

throw new IllegalStateException();

}

return this.items[this.numItems];

}

public T pop() {

T out = this.peek();

this.numItems -= 1;

return out;

}

public int size() {

return this.numItems;

}

}

This is a concrete implementation of ArrayStack in Java.

15



Java interlude 1: Generics

What is this thing?

public class ArrayStack<T> {

private T[] items;

private int numItems;

public void push(T item) { ... }

// ...

}

16



Java interlude 1: Generics

Previously, in CSE 143, if we wanted a stack of ints:
public class ArrayIntStack {

private int[] items;

private int numItems;

public void push(int item) { ... }

// ...

}

If we wanted a stack of Strings:
public class ArrayStringStack {

private String[] items;

private int numItems;

public void push(String item) { ... }

// ...

}

Rinse and repeat for each type.
17



Java interlude 1: Generics

Previously:
public class ArrayStringStack {

private String[] items;

private int numItems;

public void push(String item) { ... }

// ...

}

Using generics:
public class ArrayStack<T> {

private T[] items;

private int numItems;

public void push(T item) { ... }

// ...

}

In this class, we’ll keep things simple/handle the messiness for you

18



Java interlude 1: Generics

Previously:
public class ArrayStringStack {

private String[] items;

private int numItems;

public void push(String item) { ... }

// ...

}

Using generics:
public class ArrayStack<T> {

private T[] items;

private int numItems;

public void push(T item) { ... }

// ...

}

In this class, we’ll keep things simple/handle the messiness for you

18



Java interlude 1: Generics

Previously:
public class ArrayStringStack {

private String[] items;

private int numItems;

public void push(String item) { ... }

// ...

}

Using generics:
public class ArrayStack<T> {

private T[] items;

private int numItems;

public void push(T item) { ... }

// ...

}

In this class, we’ll keep things simple/handle the messiness for you
18



Overloading

I Link to overload form available this Friday
I Other registration questions? Email

cse373@cs.washington.edu
I Forwards emails to the CSE advisors
I Note: I have no control over course enrollment

19



Projects and Homework

Policies

I Mix of partner projects and solo written homework
I Three late days (lose 20% per day if no late days left)
I No submissions accepted after 2 days
I All assignments due at 11:30pm

Grades

I 15%: Written assignments
I 45%: Partner projects
I 20%: Midterm
I 20%: Final

See syllabus for more details

20



Projects and Homework

Policies

I Mix of partner projects and solo written homework
I Three late days (lose 20% per day if no late days left)
I No submissions accepted after 2 days
I All assignments due at 11:30pm

Grades

I 15%: Written assignments
I 45%: Partner projects
I 20%: Midterm
I 20%: Final

See syllabus for more details 20



Academic honesty

Policies regarding sharing work

1. Showing other students your code or written work is not ok.
2. Do not publicly publish your projects or homework (we want

to reuse these assignments).

Policies on discussion and collaboration

1. Discussing ideas on a high level is ok.
2. Rule-of-thumb: If you’re taking notes/taking photos during

group discussions, you’re over-sharing.

21



Academic honesty

Policies regarding sharing work

1. Showing other students your code or written work is not ok.
2. Do not publicly publish your projects or homework (we want

to reuse these assignments).

Policies on discussion and collaboration

1. Discussing ideas on a high level is ok.
2. Rule-of-thumb: If you’re taking notes/taking photos during

group discussions, you’re over-sharing.

21



Getting help

Course staff

I Piazza (Q&A forum)
I Office hours (see course website)

Resources

I Lecture slides (posted after class)
I Panopto videos (posted after some delay)
I “Resources” section on course website
I Optional textbook: Data Structures and Algorithms Analysis

in Java, 3rd edition, Weiss

22



Getting help

Course staff

I Piazza (Q&A forum)
I Office hours (see course website)

Resources

I Lecture slides (posted after class)
I Panopto videos (posted after some delay)
I “Resources” section on course website
I Optional textbook: Data Structures and Algorithms Analysis

in Java, 3rd edition, Weiss

22



Course survey

Course survey, due Friday, Jan 5 at 11:30pm

Link: https://goo.gl/KNuQL1

(Link also available on course website)

23



Project 1

Full spec will be posted on class website later today

I Deliverables:
I Implement a doubly-linked list and a dictionary (aka a map)
I Implement a graphing calculator
I Do a writeup
I Extra credit: extend your calculator and implement a

programming language

I This is a partner project:
I Fri, Jan 5, 11:30pm: find a partner, fill out form
I If you really want to work solo, email me by tonight and

explain why
I Timeline: two week project

I Wed, Jan 10, 11:30pm: part 1 due
I Wed, Jan 17, 11:30pm: part 2 due

24



Project 1

Full spec will be posted on class website later today

I Deliverables:
I Implement a doubly-linked list and a dictionary (aka a map)
I Implement a graphing calculator
I Do a writeup
I Extra credit: extend your calculator and implement a

programming language
I This is a partner project:

I Fri, Jan 5, 11:30pm: find a partner, fill out form
I If you really want to work solo, email me by tonight and

explain why

I Timeline: two week project
I Wed, Jan 10, 11:30pm: part 1 due
I Wed, Jan 17, 11:30pm: part 2 due

24



Project 1

Full spec will be posted on class website later today

I Deliverables:
I Implement a doubly-linked list and a dictionary (aka a map)
I Implement a graphing calculator
I Do a writeup
I Extra credit: extend your calculator and implement a

programming language
I This is a partner project:

I Fri, Jan 5, 11:30pm: find a partner, fill out form
I If you really want to work solo, email me by tonight and

explain why
I Timeline: two week project

I Wed, Jan 10, 11:30pm: part 1 due
I Wed, Jan 17, 11:30pm: part 2 due

24



Summary: ADTs and data structures

Abstract Data Type (ADT)

I A (mathematical) description of a ”thing” with a set of
supported operations and how they ought to behave

Data structure

I A specific bundle of data and family of algorithms that
implements an ADT

Implementation of a data structure

I Is a specific implementation in a specific language
I AKA a concrete data structure (CSE 373-specific term)

25



Summary: ADTs and data structures

Abstract Data Type (ADT)

I A (mathematical) description of a ”thing” with a set of
supported operations and how they ought to behave

Data structure

I A specific bundle of data and family of algorithms that
implements an ADT

Implementation of a data structure

I Is a specific implementation in a specific language
I AKA a concrete data structure (CSE 373-specific term)

25



Summary: ADTs and data structures

Abstract Data Type (ADT)

I A (mathematical) description of a ”thing” with a set of
supported operations and how they ought to behave

Data structure

I A specific bundle of data and family of algorithms that
implements an ADT

Implementation of a data structure

I Is a specific implementation in a specific language
I AKA a concrete data structure (CSE 373-specific term)

25



Summary: TODO list

Today:

I Skim through syllabus
I Make sure you’re signed up on Piazza

By Friday, Jan 5:

I Course survey
I Look at project 1 spec and finish the setup instructions
I Find a partner and fill out form

By Wednesday, Jan 10:

I Project 1 part 1 due

By Wednesday, Jan 17:

I Project 1 part 2 due 26


