Consider the following recursive function. You may assume that the input will be a multiple of 3.

```java
public int test(int n) {
    if (n <= 6) {
        return 2;
    } else {
        int curr = 0;
        for (int i = 0; i < n * n; i++) {
            curr += 1;
        }
        return curr + test(n - 3);
    }
}
```

(a) Write a recurrence modeling the worst-case runtime of test.

Solution:

\[
T(n) = \begin{cases}
1 & \text{When } n \leq 6 \\
1 + \frac{n}{3} + \sum_{i=3}^{n/3} (3i)^2 & \text{Otherwise}
\end{cases}
\]

(b) Unfold the recurrence into a summation (for \(n \geq 6 \)).

Solution:

\[
1 + \sum_{i=3}^{n/3} (3i)^2
\]

Modeling this recurrence correctly is slightly challenging because we want to decrease \(n \) in increments of 3.

To do this, what we do is set the summation bounds to go up to \(n/3 \) instead of \(n \), and multiply \(i \) on the inside by 3, simulating changing \(i \) in those increments.

We then also set the lower summation bound to be 3 instead of 0 or 1. That way, our summation will only consider numbers in the range 9 to \(n \) — if we set \(i = 2 \) or lower, our summation would double-count \(n \leq 6 \), which should be handled by the base case.

Note: our model only works if \(n \) is a multiple of 3.
(c) Simplify the summation into a closed form (for \(n \geq 6 \)).

Solution:

\[
1 + \sum_{i=3}^{n/3} (3i)^2 = 1 + \sum_{i=0}^{n/3} (3i)^2 - \sum_{i=0}^{2} (3i)^2 \\
= 1 + 9 \sum_{i=0}^{n/3} i^2 - \sum_{i=0}^{2} (3i)^2 \\
= 1 + 9 \sum_{i=0}^{n/3} i^2 - (0 + 9 + 36) \\
= 9 \frac{n}{3} \left(\frac{n}{3} + 1 \right) \left(\frac{2n}{3} + 1 \right) - 44
\]

Adjusting summation bounds

Pulling out a constant

Evaluating the summation

Sum of squares

A “closed form”, within the context of this class, is just any expression that does not contain a summation or is recursive. This means we can stop here without needing to further simplify the expression.

That said, if you wanted to continue simplifying, we could:

\[
9 \frac{n}{3} \left(\frac{n}{3} + 1 \right) \left(\frac{2n}{3} + 1 \right) - 44 = \frac{9}{6} \left(\frac{n}{3} \left(\frac{n}{3} + 1 \right) \left(\frac{2n}{3} + 1 \right) \right) - 44 \\
= \frac{1}{2} \left(n \left(\frac{n}{3} + 1 \right) \left(\frac{2n}{3} + 1 \right) \right) - 44 \\
= \frac{1}{2} \left(n \left(\frac{2}{3} n^2 + n + 1 \right) \right) - 44 \\
= \frac{1}{9} n^3 + \frac{1}{2} n^2 + \frac{1}{2} n - 44
\]