CSE 373 18wi: Summation Identities

Splitting a sum

$\sum_{i=a}^{b}(x+y)=\sum_{i=a}^{b} x+\sum_{i=a}^{b} y$

Factoring out a constant
$\sum_{i=a}^{b} c f(i)=c \sum_{i=a}^{b} f(i)$

Adjusting summation bounds
$\sum_{i=a}^{b} f(x)=\sum_{i=0}^{b} f(x)-\sum_{i=0}^{a-1} f(x)$
$\sum_{i=0}^{n-1} c=\underbrace{c+c+\ldots+c}_{n \text { times }}=c n$
Note: this rule is a special case of the rule on the left

Sum of squares
$\sum_{i=0}^{n-1} i^{2}=\frac{n(n-1)(2 n-1)}{6}$

Infinite geometric series
$\sum_{i=0}^{\infty} x_{i}=\frac{1}{1-x}$
Note: applicable only when $-1<x<1$

