Warmup

Discuss with your neighbors:

Come up with as many kinds of relational data as you can (data that can be represented with a graph).

- Scientific paper
 - V: paper
 - E: refs.

- Familial relationships
 - V: people
 - E: is parent of

- Maps
 - V: dest.
 - E: roads

- Food web
 - V: animals
 - E: (u,v) mean u eats v
Announcements

Project 2 Due on Friday

Next individual HW assignment assigned tonight, due next Wednesday
- Two problems – merge sort and graph practice

Sign up for Project 3 partners by Thursday night!

I am gone tonight through Tuesday. Robbie will be lecturing again. No instructor office hours tomorrow or Tuesday next week.
A **graph** is defined by a pair of sets $G = (V, E)$ where...

- V is a set of **vertices**
 - A vertex or “node” is a data entity

 \[V = \{ A, B, C, D, E, F, G, H \} \]

- E is a set of **edges**
 - An edge is a connection between two vertices

 \[E = \{ (A, B), (A, C), (A, D), (A, H),
 (C, B), (B, D), (D, E), (D, F),
 (F, G), (G, H) \} \]
Graph Vocabulary

Graph Direction
- **Undirected graph** – edges have no direction and are two-way

 \[V = \{ A, B, C \} \]

 \[E = \{ (A, B), (B, C) \} \text{ inferred } (B, A) \text{ and } (C,B) \]
- **Directed graphs** – edges have direction and are thus one-way

 \[V = \{ A, B, C \} \]

 \[E = \{ (A, B), (B, C), (C, B) \} \]

Degree of a Vertex
- **Degree** – the number of edges containing that vertex

 \[A : 1, B : 1, C : 1 \]
- **In-degree** – the number of directed edges that point to a vertex

 \[A : 0, B : 2, C : 1 \]
- **Out-degree** – the number of directed edges that start at a vertex

 \[A : 1, B : 1, C : 1 \]
Food for thought

Is a graph valid if there exists a vertex with a degree of 0? Yes

A has an “in degree” of 0

B has an “out degree” of 0

Are these valid? Yup

A has an “in degree” of 0

B has an “out degree” of 0

C has both an “in degree” and an “out degree” of 0

Is this a valid graph? Yes!

Are these valid? Yup

Sure
Graph Vocabulary

Self loop – an edge that starts and ends at the same vertex

Parallel edges – two edges with the same start and end vertices

Simple graph – a graph with no self-loops and no parallel edges

Complete graph – a graph with edges between every pair of vertices
For simple, undirected graphs...

What is the fewest number of edges a graph with n vertices can have?

0

What is the sum of the degrees of all vertices in a graph? (in terms of |V| and |E|)

2|E|

What is the maximum number of edges a graph with n vertices can have?

\[\frac{n(n-1)}{2} = O(n^2) \] - (the complete graph on n vertices \(K_n \))

\[K_4 \] has \[\frac{4 \cdot 3}{2} = 6 \] edges
Representing Graphs

Discuss with your neighbor: How would you implement a non-weighted, undirected graph? Assume there are n vertices, and those vertices are numbered $0, 1, 2, ..., n-1$.

As an example:

$$G = (V, E)$$

$V = \{0,1,2,3,4,5,6\}, \quad E = \{(0,1), (0,2), (1,3), (3,5), (4,5)\}$
Representing Graphs

\[
\begin{align*}
\text{Map}\langle\text{Vertex, set\langle\text{Vertex}\rangle}\rangle \\
\text{class vertex: DLL<vertices>} + \text{Map, array of vertices}
\end{align*}
\]
Adjacency Matrix

A matrix is a table of numbers, a[u][v].

In an adjacency matrix a[u][v] is 1 if there is an edge (u,v), and 0 otherwise.

Can represent both undirected and directed graphs.

Can represent self-loops and parallel edges (interpret as the # of edges between two vertices).

Time Complexity (|V| = n, |E| = m):
- Add Edge: O(1)
- Remove Edge: O(1)
- Check edge exists from (u,v): O(1)
- Get neighbors of u (out): O(n)
- Get neighbors of u (in): O(n)

Space Complexity: $O(n^2)$
Sparsity

A **Dense Graph** is a graph with many edges $|E| \approx |V|^2$

A **Sparse Graph** is a graph with few edges $|E| \approx |V|$

Adjacency Matrices are very wasteful of space for spare graphs – they are almost all 0s!

How could we save space?
Adjacency List

An array where the u’th element contains a list of neighbors of u.

Can represent both undirected and directed graphs
In the directed case, put the out neighbors (a[u] has v for all (u,v) in E)

Can represent self-loops and parallel edges (repeat neighbor)

Time Complexity (|V| = n, |E| = m):
 Add Edge: O(1)
 Remove Edge: O(min(n, m))
 Check edge exists from (u,v): O(min(n, m))
 Get neighbors of u (out): O(n)
 Get neighbors of u (in): O(n + m)

Space Complexity: O(n + m)
Graph Vocabulary

Weighted Graph – a graph with numeric weights associated with each edge

- can be directed or undirected
- weights can be negative, positive or 0
- common to specify “only non-negative edge weights”, or “only positive edge weights”
- denoted $e = (u, v, w)$ or sometimes $e = ((u,v), w)$
- Weights often carry meaning such as “distance”, (e.g. driving time between cities)
Representing Weighted Graphs

Adjacency Matrix – You can make the value of at each element the **weight** of the edge
- In an int array (int[]) you can’t distinguish between 0 weight edge and no edge
 - Solution 1 – You know ahead of time that 0 weight (or negative weight) edges do not exist and use that to represent no edge
 - Solution 2 (Java) – Use an Integer array (Integer[]) – have null represent no edge

Adjacency list – Store pairs (neighbor, edge weight)
Storing Data In Graphs

We often have data associated with vertices and edges

Vertex Data Examples:
- Facebook: Name, Age, Birthday, Hometown, Likes
- Google Maps: City name, elevation, hours of operation
- Internet: Page title, page contents, date last modified

Edge Data Examples:
- Facebook: Date friendship was made, friend vs. acquaintance, etc.
- Google Maps: Length of road, speed limit
Storing Data in Graphs

We could have a Graph<V, E> where V is a data type for Vertices and E is one for Edges

Adjacency Matrix: E[][] – now each entry has a pointer to edge data, or null if that edge is not in the graph

Adjacency List: E[] – the neighbor lists are now a list of edges

Both: Maintain a list V[] of vertices

Alternative Adjacency List: V[] just a list of vertices, where each vertex contains within it a list of (outgoing) edges.
When we analyze and describe graph algorithms, for simplicity we assume that each vertex has a unique identity 0, 1, 2, ... n-1.

Accesses in Adjacency Matrices and getting an adjacency list are both worst case $O(1)$ for arrays.

In reality, we often don’t have unique sequential integers for each vertex. In a real graph implementation, we often use HashMaps or HashSets.

This would get us average case $O(1)$, but worst case $O(n)$. This is bad in analysis, but fine in practice. An adjacency list that stores references to the actual vertex objects can avoid repeated table lookups.

We could always use a hash table to give unique integer IDs to every element, incurring an $O(n)$ worst case, but $O(1)$ average case overhead before each call (which can save our worst case analysis for any $O(n)$ or slower algorithm), but we don’t usually bother to.
Graph Vocabulary

Path – A sequence of connected vertices

(Directed) Path – A path in a directed graph must follow the direction of the edges

Path Length (unweighted) – The number of edges in a path
- (A,B,C,D) has length 3.

Simple Path – A path that doesn’t repeat vertices (except maybe first=last)

Cycle – A path that starts and ends at the same vertex (of length at least 1)
Graph Vocabulary

Connected Graph – A graph that has a path from every vertex to every other vertex (i.e. every vertex is **reachable** from every other vertex.)

Strongly Connected Graph – A directed graph that is connected (note the direction of the edges!)

Weakly Connected Graph – A directed graph that is connected when interpreted as undirected. (Note all strongly connected graphs are also weakly connected)
Paths and Reachability

Very common questions:
- Is there a path between two vertices? (Can I drive from Seattle to LA?)
- What is the length of the shortest path between two vertices? (How long will it take?)

Less common, but still important:
- What is the longest path in a graph?
 - In general a “hard” problem
 - 7 degrees of Kevin Bacon
 - Length of this path is called the “diameter” of a graph
A tree is a connected, acyclic graph.

An a tree there exist exactly one path between every pair of vertices.

A graph consisting of several disconnected trees is called a forest.

The trees we have seen so far have been rooted trees – interpret one vertex as the root, and its neighbors are now children, and the root of their own subtrees.

How many edges does a tree with n vertices have? $n - 1$
DAGs

DAG stands for Directed, Acyclic, Graph

This is the directed graph analog of a forest.

The trees we have made so far in this class have been implemented as weakly connected DAGs.

Can be used to represent dependencies: i.e. A must be completed before either B or C, and both B and C must be completed before D. Scheduling these tasks is called topological sort.
Subgraphs

Take a graph, and delete vertices and edges so you still have a graph.

The remaining red vertices and edges form a subgraph.

Formally: $G' = (V', E') \subseteq G = (V, E) \iff V' \subseteq V$ and $E' \subseteq E$ and G' is a graph.
Interesting Subgraphs

Cliques
- A **clique** is a complete subgraph

- A **maximal** clique is a clique that you could not add any more vertices to and still have a clique. This is distinct from the **maximum** clique, which is the largest clique in a graph.
Interesting Subgraphs

Connected Components
- A **connected component** is a **maximal, connected subgraph**

- In **directed** graphs, you have two kinds: **strongly connected**, and **weakly connected**:
Interesting Subgraphs

A **Spanning Tree** is a subgraph that is both a **tree** and includes **every vertex** (it **spans** the graph).

![Graph with a spanning tree highlighted in red](image)

Every **connected** graph has at least one spanning tree. They are like skeletons of the graph.

An important problem is finding the **minimum spanning tree**. We will learn 2 algorithms for this. It is useful for optimization tasks (e.g. minimum cost to build a road network).
Other interesting Graph Problems

- Circuits – paths or cycles that touch every vertex

- Reductions – Everything we’ve seen so far in this class can be represented as a graph – a lot of other problems can too! Graphs can solve many problems.