Hash Open Indexing
Warm Up

Discuss with your neighbors:

- What is a collision in a hash table, and how can we handle it?
- What is the load factor?
- What is the probability of a collision in a hash table?
- What’s the worst case time complexity for adding an element to a hash table? Why?
- What’s the expected case time complexity for adding an element to a hash table? Why?
Review: Handling Collisions

Solution 1: Chaining

Each space holds a “bucket” that can store multiple values. Bucket is often implemented with a LinkedList.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Array w/ indices as keys</th>
</tr>
</thead>
<tbody>
<tr>
<td>put(key,value)</td>
<td>best: $O(1)$
average: $O(1 + \lambda)$
worst: $O(n)$</td>
</tr>
<tr>
<td>get(key)</td>
<td>best: $O(1)$
average: $O(1 + \lambda)$
worst: $O(n)$</td>
</tr>
<tr>
<td>remove(key)</td>
<td>best: $O(1)$
average: $O(1 + \lambda)$
worst: $O(n)$</td>
</tr>
</tbody>
</table>

Average Case:
Depends on average number of elements per chain.

Load Factor λ
If n is the total number of key-value pairs
Let c be the capacity of array
Load Factor $\lambda = \frac{n}{c} = \frac{0}{c} = 0 = O(0)$
Handling Collisions

Solution 2: Open Addressing

Resolves collisions by choosing a different location to store a value if natural choice is already full.

Type 1: Linear Probing

If there is a collision, keep checking the next element until we find an open spot.

```java
public int hashFunction(String s) {
    int naturalHash = this.getHash(s);
    if (natural hash in use) {
        int i = 1;
        while (index in use) {
            try (naturalHash + i);
            i++;
        }
    }
}```
Linear Probing

Insert the following values into the Hash Table using a hashFunction of % table size and linear probing to resolve collisions:
1, 5, 11, 7, 12, 7, 6, 25

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>11</td>
<td>12</td>
<td></td>
<td>25</td>
<td>6</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Linear Probing

Insert the following values into the Hash Table using a hashFunction of \% table size and linear probing to resolve collisions
38, 19, 8, 109, 10

Problem:
• Linear probing causes clustering
• Clustering causes more looping when probing

Primary Clustering
When probing causes long chains of occupied slots within a hash table
**Runtime**

When is runtime good?
Empty table

When is runtime bad?
Table nearly full
When we hit a “cluster”

Maximum Load Factor?
$\lambda$ at most 1.0

When do we resize the array?
$\lambda \approx \frac{1}{2}$

Average number of probes for successful probe:

$$\frac{1}{2} \left(1 + \frac{1}{1-\lambda}\right)$$

Average number of probes for unsuccessful probe:

$$\frac{1}{2} \left(1 + \frac{1}{(1-\lambda)^2}\right)$$
Can we do better?

Clusters are caused by picking new space near natural index

Solution 2: Open Addressing

Type 2: Quadratic Probing

If we collide instead try the next $i^2$ space

```java
public int hashFunction(String s) {
 int naturalHash = this.getHash(s);
 if (naturalHash in use) {
 int i = 1;
 while (index in use) {
 try (naturalHash + i * i);
 i++;
 }
 }
}
```
Quadratic Probing

Insert the following values into the Hash Table using a hashFunction of % table size and quadratic probing to resolve collisions
89, 18, 49, 58, 79

(49 % 10 + 0 * 0) % 10 = 9
(49 % 10 + 1 * 1) % 10 = 0

(58 % 10 + 0 * 0) % 10 = 8
(58 % 10 + 1 * 1) % 10 = 9
(58 % 10 + 2 * 2) % 10 = 2

(79 % 10 + 0 * 0) % 10 = 9
(79 % 10 + 1 * 1) % 10 = 0
(79 % 10 + 2 * 2) % 10 = 3

Problems:
If λ ≥ ½ we might never find an empty spot
Infinite loop!
Can still get clusters
Secondary Clustering

Insert the following values into the Hash Table using a hashFunction of % table size and quadratic probing to resolve collisions: 19, 39, 29, 9

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>39</td>
<td></td>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td>19</td>
</tr>
</tbody>
</table>
Probing

- $h(k) = \text{the natural hash}$
- $h'(k, i) = \text{resulting hash after probing}$
- $i = \text{iteration of the probe}$
- $T = \text{table size}$

**Linear Probing:**

$h'(k, i) = (h(k) + i) \% T$

**Quadratic Probing**

$h'(k, i) = (h(k) + i^2) \% T$

For both types there are only $O(T)$ probes available
- Can we do better?
Double Hashing

Probing causes us to check the same indices over and over- can we check different ones instead?

Use a second hash function!

\[ h'(k, i) = (h(k) + i \cdot g(k)) \mod T \quad \text{<- Most effective if } g(k) \text{ returns value prime to table size} \]

```java
public int hashFunction(String s) {
 int naturalHash = this.getHash(s);
 if (naturalHash in use) {
 int i = 1;
 while (index in use) {
 try (naturalHash + i \cdot jump_Hash(key));
 i++;
 }
 }
 return naturalHash;
}
```
Second Hash Function

Effective if \( g(k) \) returns a value that is \textit{relatively prime} to table size
- If \( T \) is a power of 2, make \( g(k) \) return an odd integer
- If \( T \) is a prime, make \( g(k) \) return any smaller, non-zero integer
  - \( g(k) = 1 + (k \mod T - 1) \)

How many different probes are there?
- \( T \) different starting positions
- \( T - 1 \) jump intervals
- \( O(T^2) \) different probe sequences
  - Linear and quadratic only offer \( O(T) \) sequences

\( \leftarrow \) comes from \( g(k) \) after modding by \( T - 1 \) (we don't allow probe distances of \( T \) since that would put us back where we started!)
\( (h(K) + i \times T) \mod T = h(K) \) for any integer \( i \).
Summary

1. Pick a hash function to:
   - Avoid collisions
   - Uniformly distribute data
   - Reduce hash computational costs

2. Pick a collision strategy
   - Chaining
     - LinkedList
     - AVL Tree
   - Probing
     - Linear
     - Quadratic
   - Double Hashing

   No clustering
   Potentially more “compact” (λ can be higher)

   Managing clustering can be tricky
   Less compact (keep λ < ½)
   Array lookups tend to be a constant factor faster than traversing pointers