Binary Search Trees
Warm Up

What is the runtime for get, put, and remove of an ArrayDictionary?

Can you think of a way of making it better?
Finding your partner

Your repository will be titled

project1-NETID1-NETID2

To find your partner, take the NETID that isn’t yours, add @uw.edu, and e-mail them!

If that still doesn’t work, e-mail the course staff and we’ll send an introductory e-mail to the two of you.
Storing Items in an Array

<table>
<thead>
<tr>
<th>Key</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>“dog”</td>
</tr>
<tr>
<td>4</td>
<td>“cat”</td>
</tr>
<tr>
<td>7</td>
<td>“bird”</td>
</tr>
<tr>
<td>9</td>
<td>“horse”</td>
</tr>
<tr>
<td>10</td>
<td>“oxen”</td>
</tr>
<tr>
<td>12</td>
<td>“ferret”</td>
</tr>
<tr>
<td>15</td>
<td>“moose”</td>
</tr>
</tbody>
</table>

get(key): $O(n)$
put(key, value): $O(n)$
remove(): $O(n)$
Storing Sorted Items in an Array

<table>
<thead>
<tr>
<th>Key</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>"bird"</td>
</tr>
<tr>
<td>4</td>
<td>"cat"</td>
</tr>
<tr>
<td>3</td>
<td>"dog"</td>
</tr>
<tr>
<td>12</td>
<td>"ferret"</td>
</tr>
<tr>
<td>50</td>
<td>"oxen"</td>
</tr>
<tr>
<td>2</td>
<td>"horse"</td>
</tr>
<tr>
<td>15</td>
<td>"moose"</td>
</tr>
</tbody>
</table>

get(key): $O(\log n)$
put(key, value): $O(n)$
remove(): $O(n)$
Storing Sorted Items in an Array

get() – O(logn)
put() – O(n)
remove() – O(n)

Can we do better with insertions and removals?
Trees!

A tree is a collection of nodes
- Each node has at most 1 parent and 0 or more children

Root node: the single node with no parent, “top” of the tree

Branch node: a node with one or more children

Leaf node: a node with no children

Edge: a pointer from one node to another

Subtree: a node and all its descendants

Height: the number of edges contained in the longest path from root node to some leaf node
Tree Height

What is the height of the following trees?

1. Height = 2
2. Height = 0
3. Height = -1 or NA
Traversals

traversal: An examination of the elements of a tree.
- A pattern used in many tree algorithms and methods

Common orderings for traversals:
- **pre-order**: process root node, then its left/right subtrees
 - 17 41 29 6 9 81 40
- **in-order**: process left subtree, then root node, then right
 - 29 41 6 17 81 9 40
- **post-order**: process left/right subtrees, then root node
 - 29 6 41 81 40 9 17

Traversal Trick: Sailboat method
- Trace a path around the tree.
- As you pass a node on the proper side, process it.
 - pre-order: left side
 - in-order: bottom
 - post-order: right side
A binary search tree is a binary tree that contains comparable items such that for every node, all children to the left contain smaller data and all children to the right contain larger data.
Implement Dictionary

Binary Search Trees allow us to:
- quickly find what we’re looking for
- add and remove values easily

Dictionary Operations:
Runtime in terms of height, “h”
get() – O(h)
put() – O(h)
remove() – O(h)

What do you replace the node with?
Largest in left sub tree or smallest in right sub tree
Practice

What will the binary search tree look like if you insert nodes in the following order:
5, 8, 7, 10, 9, 4, 2, 3, 1

What is the pre-order traversal order for the resulting tree?
Height in terms of Nodes

For “balanced” trees $h \approx \log_c(n)$ where c is the maximum number of children
Balanced binary trees $h \approx \log_2(n)$
Balanced trinary tree $h \approx \log_3(n)$
Thus for balanced trees operations take $\Theta(\log_c(n))$
Unbalanced Trees

Is this a valid Binary Search Tree?
Yes, but...

We call this a **degenerate tree**

For trees, depending on how balanced they are,
Operations at worst can be $O(n)$ and at best
can be $O(\log n)$

How are degenerate trees formed?
- insert(10)
- insert(9)
- insert(7)
- insert(5)
Measuring Balance

Measuring balance:

For each node, compare the heights of its two sub trees

Balanced when the difference in height between sub trees is no greater than 1
Meet AVL Trees

AVL Trees must satisfy the following properties:
- **binary trees**: all nodes must have between 0 and 2 children
- **binary search tree**: for all nodes, all keys in the left subtree must be smaller and all keys in the right subtree must be larger than the root node
- **balanced**: for all nodes, there can be no more than a difference of 1 in the height of the left subtree from the right. Math.abs(height(left subtree) – height(right subtree)) ≤ 1

AVL stands for Adelson-Velsky and Landis (the inventors of the data structure)
Is this a valid AVL tree?

Is it...
- Binary yes
- BST yes
- Balanced? yes
Is this a valid AVL tree?

Is it...
- Binary yes
- BST yes
- Balanced? no

Height = 6
Height = 2

- Height of subtree 2 is 6
- Height of subtree 3 is 2

- Is subtree 2 balanced? no
- Is subtree 3 balanced? yes

- Is the tree balanced? no
Is this a valid AVL tree?

Is it...
- Binary: yes
- BST: no
- Balanced: yes

9 > 8
Implementing an AVL tree dictionary

Dictionary Operations:

get() – same as BST

containsKey() – same as BST

put() - Add the node to keep BST, fix AVL property if necessary

remove() - Replace the node to keep BST, fix AVL property if necessary

Unbalanced!
Rotations!

Insert 'c'

Unbalanced!

Balanced!
Rotations!

Insert ‘c’

Unbalanced!

Balanced!
put(16);
put(16);
So much can go wrong

Unbalanced!

1

3

2

Unbalanced!

1

3

2

Unbalanced!

1

3

2

Unbalanced!

1

3

2
Two AVL Cases

Line Case
Solve with 1 rotation

Kink Case
Solve with 2 rotations

Rotate Right
Parent’s left becomes child’s right
Child’s right becomes its parent

Rotate Left
Parent’s right becomes child’s left
Child’s left becomes its parent

Rotate subtree left
Rotate root tree right

Rotate subtree right
Rotate root tree left
Double Rotations 1

Insert 'c'

Unbalanced!