

Lecture 3: How to measure efficiency

Data Structures and Algorithms

CSE 373 SU 18 – BEN JONES

Announcements

- Course background survey due by Friday

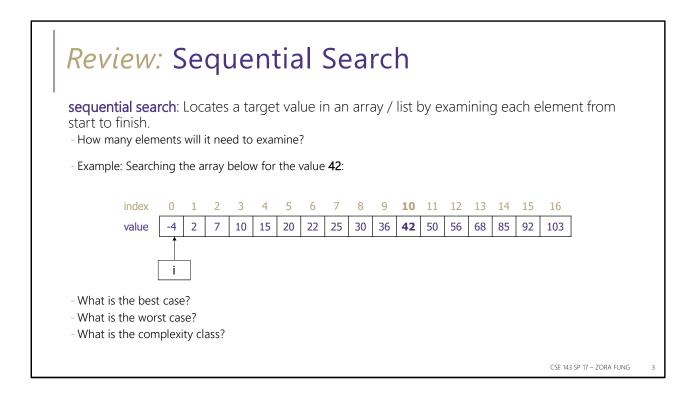
- HW 1 is Due Friday

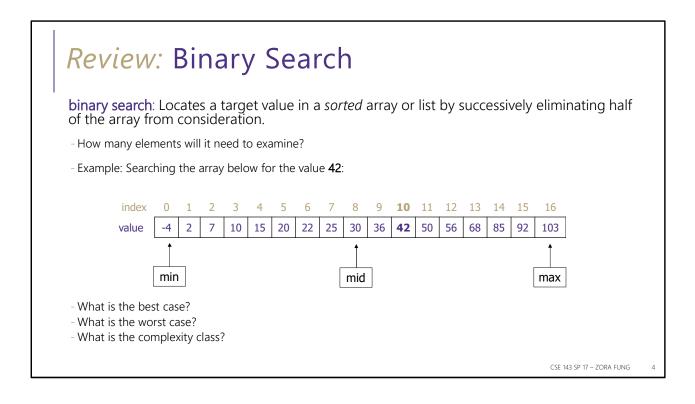
- Alex has Office Hours after class (2:30-4:30) CSE 006, will help with setup

- If you have any questions about your setup please come to office hours so we can iron out all the wrinkles before the partnered projects begin next week.

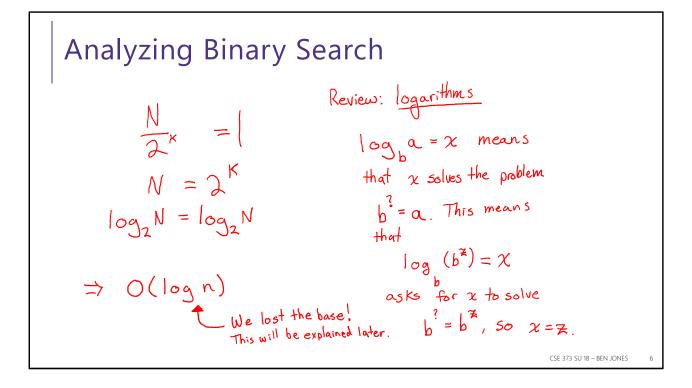
- HW 2 Assigned on Friday – Partner selection forms due by 11:59pm **Thursday** <u>https://goo.gl/forms/rVrVUkFDdsqI8pkD2</u>

CSE 373 SU 18 – BEN JONES





What is t - At each it				minat	te hal	lf of t	he rei	mainir	na ele	mento	:					
How long - 1 st iteratic - 2 nd iterati	n – N/	/2 e \/4 (leme elem	ents re ients	emair rema	า in										
- Kth iterati		,		emen		lidili										
- Kth iterati		,		amen 3	4	5			89	10	11	12				
- Kth iterati - Done whe	en N/2	,							<mark>8 9</mark> 30 30		1	12 56	13 68	14 85	15 92	16 103



Analyzing Binary Search

Finishes when N / $2^{K} = 1$

 $N / 2^{\kappa} = 1$

-> multiply right side by 2^{K}

$$N = 2^{K}$$

-> isolate K exponent with logarithm

 $Log_2N = k$

Is this exact?

- N can be things other than powers of 2 $\,$

- If N is odd we can't technically use Log_2

- When we have an odd number of elements we select the larger half

- Within a fair rounding error

Asymptotic Analysis

asymptotic analysis: how the runtime of an algorithm grows as the data set grows

Approximations / Rules

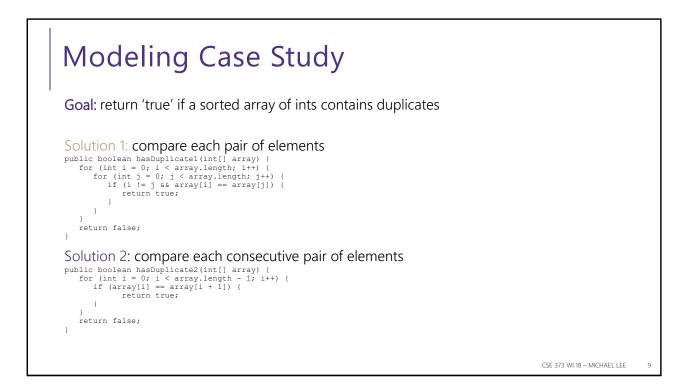
- Basic operations take "constant" time
 - Assigning a variable
 - Accessing a field or array index
- Consecutive statements
- Sum of time for each statement
- Function calls
- Time of function's body
- Conditionals
- Time of condition + maximum time of branch code

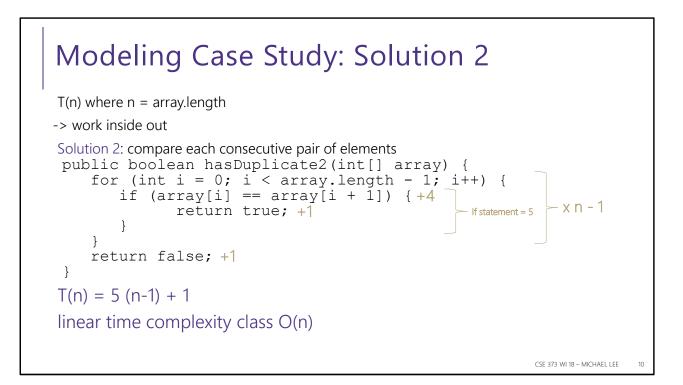
- Loops

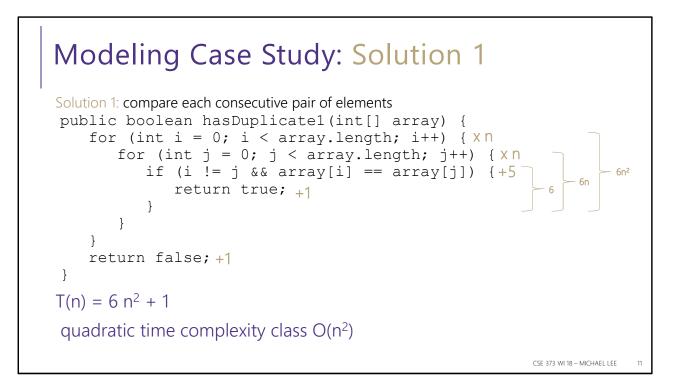
- Number of iterations x time for loop body

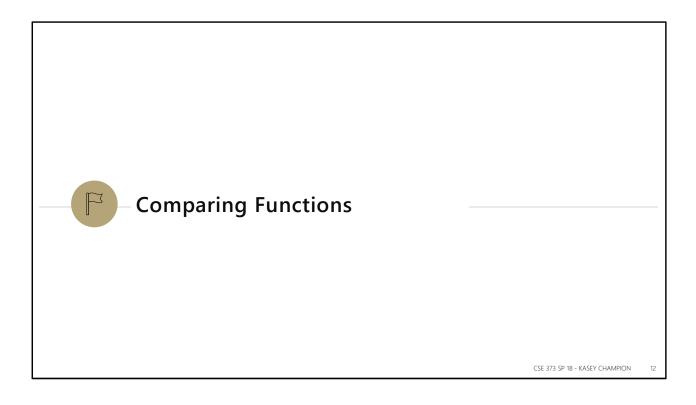
CSE 373 SP 18 - KASEY CHAMPION

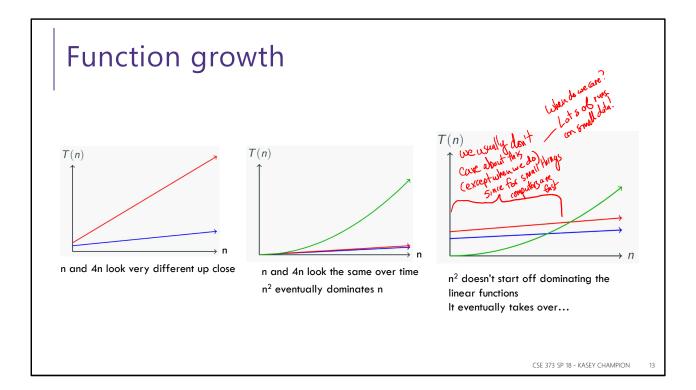
8







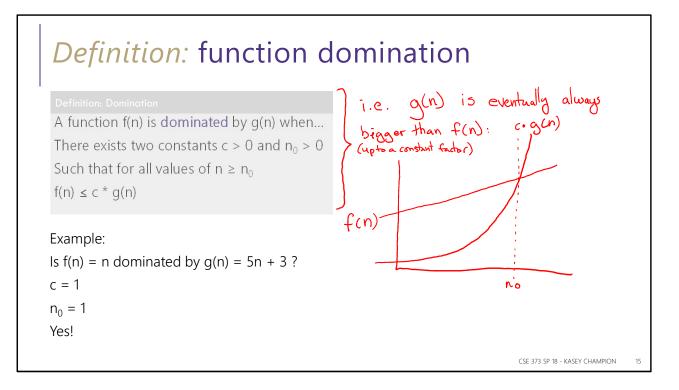


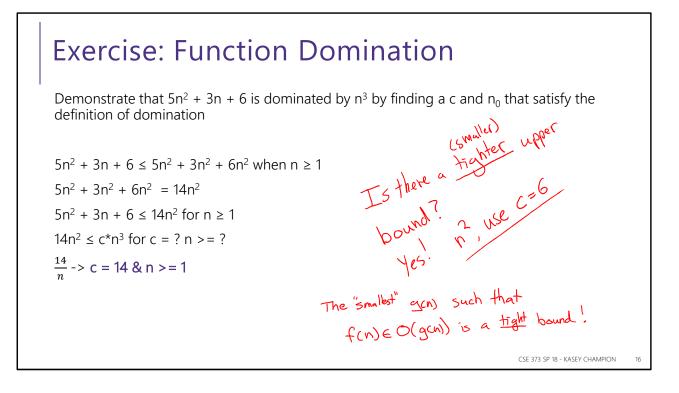


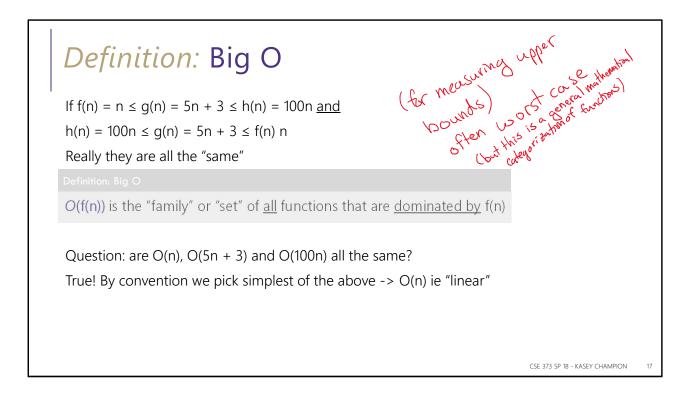
Function comparison: exercise

$$\begin{split} f(n) &= n \leq g(n) = 5n + 3? \quad \text{True} - \text{ all linear functions are treated as equivalent} \\ f(n) &= 5n + 3 \leq g(n) = n? \quad \text{True} \\ f(n) &= 5n + 3 \leq g(n) = 1? \quad \text{False} \\ f(n) &= 5n + 3 \leq g(n) = n^2? \quad \text{True} - \text{quadratic will always dominate linear} \\ f(n) &= n^2 + 3n + 2 \leq g(n) = n^3? \quad \text{True} \\ f(n) &= n^3 \leq g(n) = n^2 + 3n + 2? \quad \text{False} \end{split}$$

CSE 373 WI 18 – MICHAEL LEE







Definitions: Big Ω

"f(n) is greater than or equal to g(n)" F(n) dominates g(n) when: There exists two constants such that c > 0 and n0 > 0Such that for all values n >= n0F(n) >= c * g(n) is true

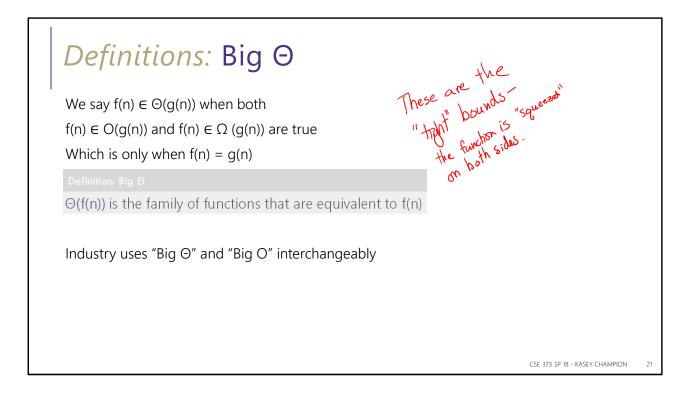
Definition: Big Ω

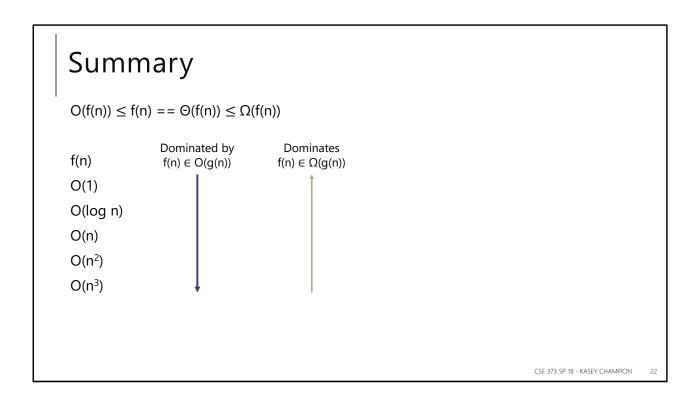
 $\Omega(f(n))$ is the family of all functions that dominates f(n)

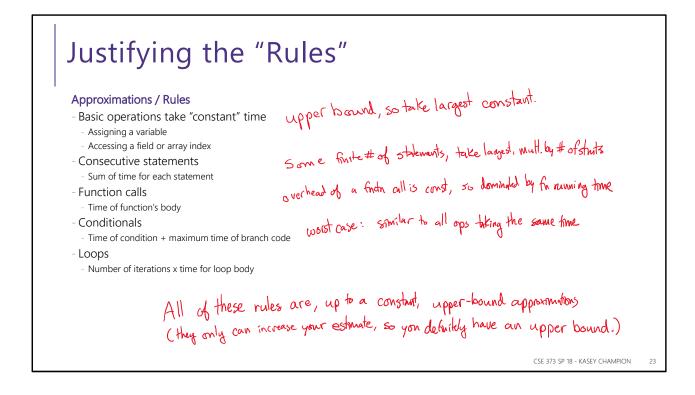
∈ Element Of

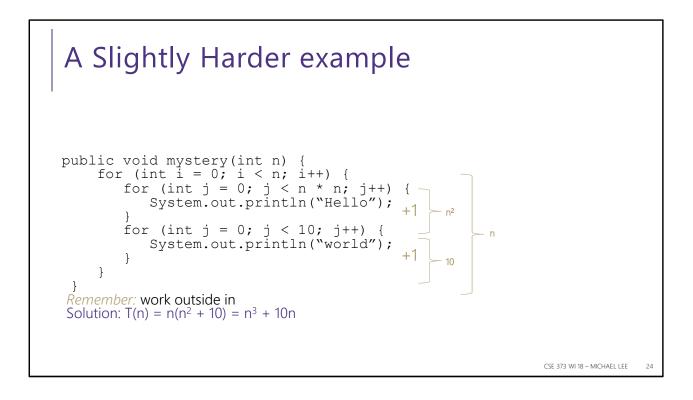
f(n) is dominated by g(n) Is that the same as "f(n) is contained inside O(g(n))" Yes! f(n) \in g(n)

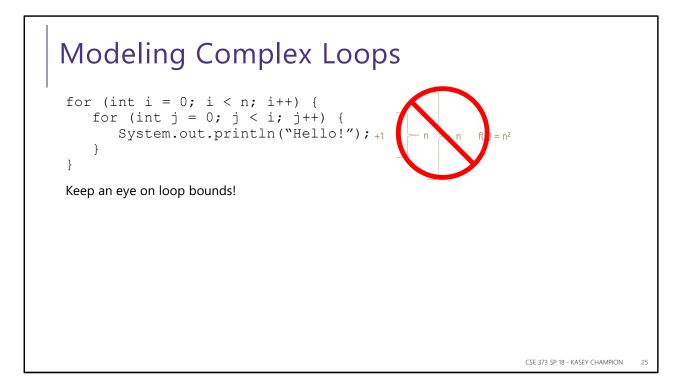
Examples		Definition: Big O O(f(n)) is the "family" or "set" of <u>all</u> functions that are <u>dominated by</u> f(n
4n ² ∈ Ω(1)	4n ² ∈ O(1)	
true	false	Definition: Big Ω
$4n^2 \in \Omega(n)$	4n² ∈ O(n)	Ω(f(n)) is the family of all functions that dominates f(n)
true	false	
$4n^2 \in \Omega(n^2)$	4n ² ∈ O(n ²)	
true	true	
$4n^2 \in \Omega(n^3)$	4n ² ∈ O(n ³)	
false	true	
$4n^2 \in \Omega(n^4)$	4n ² ∈ O(n ⁴)	
false	true	
		CSE 373 SP 18 - KASEY CHAMPION

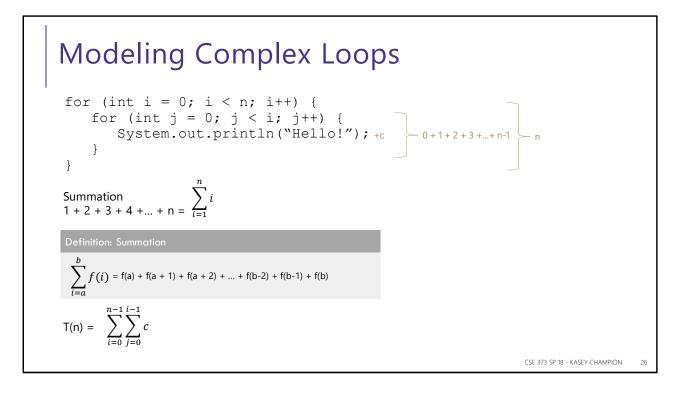


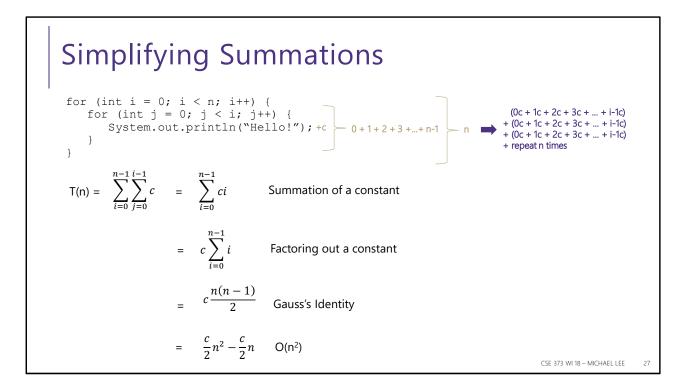






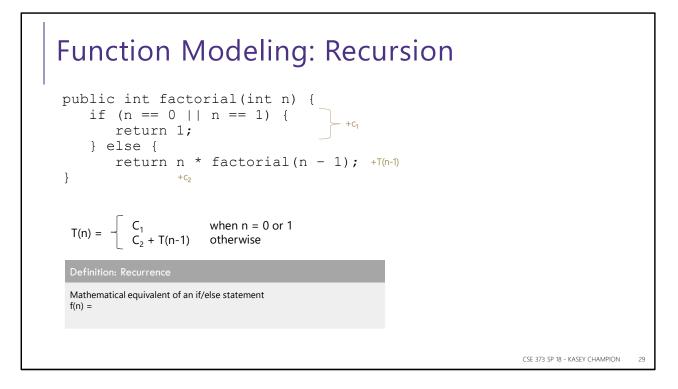






Function Modeling: Recursion

```
public int factorial(int n) {
    if (n == 0 || n == 1) { +3
        return 1; +1
    } else {
        return n * factorial(n - 1); +????
}
```



Unfolding Method $\begin{aligned} & (r) = - \begin{pmatrix} c_1 & when n = 0 \text{ or } 1 \\ c_2 + r(n-1) & otherwise \end{pmatrix} \\ & (r) = c_2 + r(3-1) = c_2 + (c_2 + r(2-1)) = c_2 + (c_2 + (c_1)) = 2c_2 + c_1 \\ & (r) = c_1 + \sum_{i=0}^{n-1} c_j \\ & \text{Summation of a constant} \\ & (r) = c_1 + (n-1)c_2 \end{aligned}$

30