1. Graph traversal

(a) Consider the following graph. Suppose we want to traverse it, starting at node A.

If we traverse this using breadth-first search, what are two possible orderings of the nodes we visit? What if we use depth-first search?

(b) Same question, but on this graph:

2. Checking for Cycles

Given a graph as an adjacency list, design an algorithm that checks whether the graph has a cycle or not. The runtime of the algorithm must be $O(|V| + |E|)$, where V is the vertex set and E is the edge set. You may assume that the graph is unweighted, has no parallel edges and has no self loops.

3. Simulating Dijkstra’s

(a) Consider the following graph:
Suppose we run Dijkstra’s algorithm on this graph starting with vertex \(s \). What are the final costs of each vertex and the shortest paths from \(s \) to each vertex?

(b) Here is another graph. What are the final costs and shortest paths if we run Dijkstra’s starting on node \(A \)?

4. **Topological Sort**

Find a topological sort of the following graph: