
Disjoint Sets with Arrays Data Structures and Algorithms

CSE 373 SP 18 - KASEY CHAMPION 1



Warm Up

Using the union-by-rank and path-compression optimized implementations 

of disjoint-sets draw the resulting forest caused by these calls:

1.makeSet(a)
2.makeSet(b)
3.makeSet(c)
4.makeSet(d)
5.makeSet(e)
6.makeSet(f)
7.makeSet(h)
8.union(c, e)
9.union(d, e)
10.union(a, c)
11.union(g, h)
12.union(b, f)
13.union(g, f)
14.union(b, c)

CSE 373 SP 18 - KASEY CHAMPION 2

e

cb

rank = 2

da

g

f

h

Reminders:
• Union-by-rank: make the tree 

with the larger rank the new 

root, absorbing the other tree. 

If ranks are equal pick one at 

random, increase rank by 1

• Path-compression: when 

running findSet() update 

parent pointers of all 

encountered nodes to point 

directly to overall root

• Union(x, y) internally calls 

findSet(x) and findSet(y)

TreeDisjointSet<E>

makeSet(x)-create a new tree 
of size 1 and add to our 
forest

state

behavior

Collection<TreeSet> forest

findSet(x)-locates node with x 
and moves up tree to find root
union(x, y)-append tree with y 
as a child of tree with x 

Dictionary<NodeValues, 
NodeLocations> nodeInventory



Warm Up

Using the union-by-rank and path-compression optimized implementations 
of disjoint-sets draw the resulting forest caused by these calls:
1.makeSet(a)
2.makeSet(b)
3.makeSet(c)
4.makeSet(d)
5.makeSet(e)
6.makeSet(f)
7.makeSet(g)
8.makeSet(h)
9.union(c, e)
10.union(d, e)
11.union(a, c)
12.union(g, h)
13.union(b, f)
14.union(g, f)
15.union(b, c)

CSE 373 SP 18 - KASEY CHAMPION 3

Reminders:
• Union-by-rank: make the tree 

with the larger rank the new 
root, absorbing the other tree. 
If ranks are equal pick one at 
random, increase rank by 1

• Path-compression: when 
running findSet() update 
parent pointers of all 
encountered nodes to point 
directly to overall root

• Union(x, y) internally calls 
findSet(x) and findSet(y)

TreeDisjointSet<E>

makeSet(x)-create a new tree 
of size 1 and add to our 
forest

state

behavior

Collection<TreeSet> forest

findSet(x)-locates node with x 
and moves up tree to find root
union(x, y)-append tree with y 
as a child of tree with x 

Dictionary<NodeValues, 
NodeLocations> nodeInventory

https://courses.cs.washington.edu/courses/cse373/18sp/files/slides/disjoint_set_warmup.pdf

https://courses.cs.washington.edu/courses/cse373/18sp/files/slides/disjoint_set_warmup.pdf


Administrivia
Monday Tuesday Wednesday Thursday Friday

5/21
Disjoint Sets

5/23
Implementing 
Disjoint Sets

5/24
Interview Prep

5/25
P vs NP

HW 6 due
HW 7 out

5/28
Memorial Day

5/30
Final Review

5/31
Final Review

6/1
Tech Interview Prep

HW 7 due

6/5
Final @ 8:30am

CSE 373 SP 18 - KASEY CHAMPION 4

Sorry, Kasey’s email is DEEP
Want a meeting? Email me this week for times next week
Have ANY grading questions/concerns, email Kasey by this weekend
TA lead review TBA
Alternative testing time TBA



Optimized Disjoint Set Runtime
makeSet(x)
Without Optimizations

With Optimizations

findSet(x)
Without Optimizations

With Optimizations

union(x, y)
Without Optimizations

With Optimizations

CSE 373 SP 18 - KASEY CHAMPION 5

O(1)

O(1)

O(n)

O(n)

Best case: O(1) Worst case: O(logn)

Best case: O(1) Worst case: O(logn)



Kruskal’s

CSE 373 SP 18 - KASEY CHAMPION 6

KruskalMST(Graph G) 
initialize each vertex to be a connected component
sort the edges by weight
foreach(edge (u, v) in sorted order){

if(u and v are in different components){
add (u,v) to the MST
Update u and v to be in the same component

}
}

KruskalMST(Graph G) 
initialize a disjointSet, call makeSet() on each vertex
sort the edges by weight
foreach(edge (u, v) in sorted order){

if(findSet(u) != findSet(v)){
add (u,v) to the MST
union(u, v)

}
}

O(V*tm)
O(ElogE) / O(ElogV)

O(V*tu+E*tf)

O(V)

O(E)
O(ElogV)

O(logV)

tm = time to make MSTs
tf = time to find connected components
tu = time to union

tm = O(1)
tf = O(logV)
tu = O(logV)

O(logV)

O(V + ElogV + ElogV) Aside: O(V + ElogV + E) if you apply ackermann



CSE 373 SP 18 - KASEY CHAMPION 7

KruskalMST(Graph G) 
initialize a disjointSet, call makeSet() 

on each vertex
sort the edges by weight
foreach(edge (u, v) in sorted order){

if(findSet(u) != findSet(v)){
add (u,v) to the MST
union(u, v)

}
}



CSE 373 SP 18 - KASEY CHAMPION 8

KruskalMST(Graph G) 
initialize a disjointSet, call makeSet() 

on each vertex
sort the edges by weight
foreach(edge (u, v) in sorted order){

if(findSet(u) != findSet(v)){
union(u, v)

}
}



Implementation

Use Nodes?

In modern Java (assuming 64-bit JDK) each object takes about 32 bytes
- int field takes 4 bytes
- Pointer takes 8 bytes
- Overhead ~ 16 bytes
- Adds up to 28, but we must partition in multiples of 8 => 32 bytes

Use arrays instead!
- Make index of the array be the vertex number

- Either directly to store ints or representationally

- We implement makeSet(x) so that we choose the representative

- Make element in the array the index of the parent

CSE 373 SP 18 - KASEY CHAMPION 9



Array Implementation

CSE 373 SP 18 - KASEY CHAMPION 10

1

6

3

rank = 0

4

2

105 7

0

98

11

15

13

rank = 3

14

12

1716

18

rank = 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 180 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
-1 -1 1 2 2 2 1 6 7 7 7 -1 11 12 12 11 15 15 17

Store (rank * -1) - 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
-1 -4 1 2 2 2 1 6 7 7 7 -4 11 12 12 11 15 15 17

Each “node” now only takes 4 bytes of memory instead of 32



Practice

CSE 373 SP 18 - KASEY CHAMPION 11

3

0

rank = 0

4

111

5

2

13

12

rank = 2

109

1415 8

rank = 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

rank = 1

6

7

16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
3 0 0 -3 3 -1 -2 6 12 13 13 0 13 -3 12 12 12



Array Method Implementation
makeSet(x)
add new value to array with a rank of -1

findSet(x)
Jump into array at index/value you’re looking for, jump to parent based on element at that index, 
continue until you hit negative number

union(x, y)
findSet(x) and findSet(y) to decide who has larger rank, update element to represent new parent 
as appropriate

CSE 373 SP 18 - KASEY CHAMPION 12



Graph Review
Graph Definitions/Vocabulary
- Vertices, Edges
- Directed/undirected
- Weighted
- Etc…

Graph Traversals
- Breadth First Search
- Depth First Search

Finding Shortest Path
- Dijkstra’s

Topological Sort
Minimum Spanning Trees
- Primm’s
- Kruskal’s

Disjoint Sets
- Implementing Kruskal’s

CSE 373 SP 18 - KASEY CHAMPION 13



Interview Prep
Treat it like a standardized test
- Cracking the Coding Interview
- Hackerrank.com
- Leetcode.com

Typically 2 rounds

Tech screen

“on site” interviews

4 general types of questions
- Strings/Arrays/Math
- Linked Lists
- Trees
- Hashing
- Optional: Design

CSE 373 SP 18 - KASEY CHAMPION 14

It’s a conversation!
1. T – Talk 
2. E – Examples 
3. B – Brute Force
4. O – Optimize 
5. W – Walk through
6. I - Implement
7. T – Test 


